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Discrimination Exposed?
On the Reliability of Explanations for Discrimination Detection

ANONYMOUS AUTHOR(S)

Explanations are often cast as tools to uncover algorithmic discrimination. Given a model, we can explain its predictions to identify
the rationale behind each outcome. We can present these explanations to decision subjects to let them contest potentially discrimina-
tory outcomes. We can also present them to auditors to flag biased models.These beliefs – which have motivated rules and regulations
surrounding explanation – are founded on inherently unverifiable assumptions. These include assumptions about the causal relation-
ship between the inputs of a model and protected membership, the reliability of explanation to reveal salient information, and the
ability of consumers or auditors to use information to make accurate claims about discrimination. In this work, we evaluate the via-
bility of these beliefs under best-case assumptions. We consider a simple task where we can associate each prediction with a ground
truth label. We design a user study where we can train participants to detect discrimination using explanations and evaluate the
accuracy of claims surrounding explanations. We evaluate detection performance as we control the saliency of proxies of protected
attributes, human knowledge about protected class, and their knowledge of causal mechanisms. Our results show that explanations
fail to reliably flag unfair predictions and underscore the need for alternative safeguards to detect discrimination.

1 Introduction

Machine learning models are routinely used to automate decisions that affect people – be it to approve a loan [80], an
insurance claim [37], or a public service [78]. Over the past decade, it has become clear that deploying models can lead
to discrimination, as their predictions or performance can change across protected attributes such as sex, age, or race
[10, 72]. In applications like lending and hiring, such effects arise from indirect discrimination [73] as models without
protected attributes (e.g., sex) assign predictions through proxies (e.g., credit_history).

Many rules and regulations to protect consumers from discrimination in these sensitive domains revolve around
explainability. In effect, multiple jurisdictions reference “discrimination” as a core reason for a “right to an explanation”
in ”high-risk” applications (e.g., EU [74, 75], Brazil [12], Korea [38] and proposed legislation in the United States [1,
2]). Our reliance on explainability stems from a widely-held belief that explanations can reveal that “an algorithmic

decision is affected by a (legally) protected attribute.”[79]. In the event that this belief were true, post-hoc explanation
methods provide a substantial benefit. Namely, they could safeguard against discrimination in ways that are easy to
operationalize [6, 8, 23, 27, 48, 54, 82] – e.g., to audit black-box models without interfering in model development, or
to provide decision subjects with information to contest adverse decisions.

Despite explanations being central to enforcing anti-discrimination laws, there is little evidence they can fulfill this
function effectively. Simply put, we currently do not know the answers to questions such as “If we provide consumers
with an explanation, can they effectively detect proxies?” or “If we ask auditors to check for proxies using explanations,
can they retrieve such proxies?” or “How sensitive is this to causal assumptions or access to data?” This is surprising
since the right to an explanation in a major consumer application was enacted over fifty years ago [see e.g., the adverse
action provision in ECOA 71]. In this case, evidence is lacking because evaluating explanations requires technical
validation and usability testing. The algorithms must produce faithful, relevant explanations. Users must be able to
understand and utilize them effectively. In discrimination detection tasks, we face yet another barrier as any claim
is subject to assumptions related to chance and causality (e.g., which variable is a proxy, whether it affected a given
decision, etc.).
Manuscript submitted to ACM 1
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2 Anon.

In this paper, we aim to test if explanations can assist humans in detecting discrimination, and characterize the
conditions under which this assistance is meaningful. Our goal is to produce evidence to inform policy or compliance
– either that we need to consider an alternative mechanism or that we need to impose additional conditions on ex-
planations. Our approach seeks to distill the most basic assumptions behind non-direct discrimination and create a
minimal setup that enacts them. We also aim to identify and control for confounding factors and explanation failure

modes to attribute detection performance directly to the explanations. Our main contributions include:

1. We present a formal model for discrimination detection with explanations. Our model highlights the assumptions
needed to assess if explanations help users detect discrimination. We use it to identify potential failure modes of
explanations in supporting discrimination claims.

2. We design a user study to evaluate the reliability of discrimination detection with explanations. Our design provides
a sandbox environment for key failure modes related to human interaction and provides full control over our task
– a machine-learning model, causal assumptions, and explanations.

3. We conduct controlled human-subject experiments. Our results show that participants fail to perform reliably irre-
spective of which explanations they see and how much knowledge about the problem they have. By showing that
explanations fail to deliver on a simple task, these results stress the need for alternative solutions.

Related Work We study explanations as a safeguard for algorithmic discrimination in domains such as lending and
hiring [5, 31, 52]. In these domains, fair treatment requires models to output similar predictions across protected groups
(i.e., treatment parity). In practice, models may violate this principle as a result of indirect discrimination via proxy
variables [see e.g., 73, for a review]. These issues have motivated a extensive stream of work to detect and mitigate
discrimination – e.g., methods to train models that do not discriminate [see e.g., 86], to identify proxies in a third-party
audit [see e.g., 4], and to enable reporting group or individual discrimination [21]. Our work formalizes discrimination
by adopting a causal notion of fairness [see e.g., 43, 61] - e.g., “would my prediction change if I belonged to a different
protected group.” [39]

Our work is related to a stream of research on how humans interact with explanations [see e.g., 9, 14–18, 44, 45, 81,
84]. Many works study if and how explanations impact decision-making [9, 14–19, 34, 44, 45, 47, 77, 87, 88]. Studies on
counterfactual explanations that we use in this work [see e.g., 22, 25, 30, 41, 42, 68–70, 83] showmarginal improvements
in decision-making [22, 49, 50, 76, 83] and debugging model behavior [3, 55, 65]. There is less work on using explana-
tions to assess discrimination, with most works focusing on issues that can arise when computing explanations ⁇e.g.,
lack of fidelity or data-related issues]balagopalan2022road, dai2022fairness, mhasawade2024understanding. As we dis-
cuss, one of the key challenges of this question is a mismatch in scope. Assessing discrimination involves questions
about causality at a population level. In contrast, explanations provide answers about model behavior at the instance
level. The few studies on using explanations to detect discrimination at the instance level focus on tasks where models
use protected characteristics [see e.g., 26, 60] and suggest that explanations help people spot discriminatory predictions.
We study whether explanations work in the tasks envisioned by regulators, where users need to detect discrimination
of individual predictions based on proxy variables. Our results align with the emerging picture from studies such as by
Goyal et al. [35]. The authors demonstrate that users cannot use explanations to make less discriminatory decisions
when discrimination comes from proxy variables. We explicitly highlight that users cannot tell which predictions are
fair and which are not based on explanations. In this way, our research adds to a stream of prior results that show
explanations influence perceptions of fairness. These prior studies demonstrate the importance of factors such as the
prediction task [7], explanation type [11, 51, 64, 85], and information content [7, 11, 57, 66, 67].
Manuscript submitted to ACM
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2 Framework
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Fig. 1. Causal diagram for discrimination de-
tection. Model ℎ : 𝐵 × 𝑋 → 𝑌 returns predic-
tion 𝑌 of an outcome variable 𝑌 given input
proxy 𝐵 and features𝑋 . We seek to determine
if model predictions change with respect pro-
tected attribute 𝐴 through its proxy 𝐵, which
is assumed to be related to the outcome 𝑌 .
For example, in loan approval predictions (𝑌 ),
the model uses an individual’s income (𝑋 ) and
credit history (𝐵) as inputs. Gender (𝐴) could
affect credit history due to differences in credit
scores or the intensity of credit usage found be-
tween men and women [see e.g, 53].

We consider a task where (un)fairness involves whether a model’s predic-
tions change based on a protected attribute 𝐴 (e.g., gender). Specifically, we
examine if altering the protected attribute would result in different model
outputs for individual predictions. We formalize this task through causal
relationships between features and outcomes in a directed acyclic graph
shown in Fig. 1. The model ℎ is a deterministic function ℎ : 𝑋 × 𝐵 → 𝑌

that predicts an outcome 𝑌 (e.g., repayment). 𝐵 denotes the proxy variable,
and 𝑋 denotes inputs that are independent of the protected attribute (e.g.,
𝑋 = income). The model satisfies two common assumptions:

1. Indirect Discrimination. The model does not use the protected attribute
as input, but its predictions may change as a result of a variable 𝐵 (e.g.,
𝐵 = credit_history) that is a proxy for the protected attribute. [4, 73]

2. Business Necessity. The proxy 𝐵 can improve predictive accuracy, else
the model owner could simply remove it from the list of features [32]

These assumptions are met by the vast majority of models in applications
where we would care about discrimination. First, models directly using
protected attributes would violate treatment disparity [10] by assigning different predictions to different groups, so
they’re typically omitted. Second, in cases where the proxy did not improve accuracy, a model owner could avoid
scrutiny by training a model without it.

Characterizing Discrimination We determine the fairness of each feature vector based on a (relaxed) notion of
counterfactual fairness [43].

Definition 1. Given a model ℎ, we say that its prediction for a (𝑥, 𝑏, 𝑎) ∈ 𝑋 × 𝐵 × 𝐴 is 𝛿-counterfactually fair if
changing the protected attribute can change the prediction by at most 𝛿 :

| Pr(𝑌𝐴←𝑎 = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏, 𝐴 = 𝑎)︸                                                  ︷︷                                                  ︸
Current Prediction where 𝐴 = 𝑎

− Pr(𝑌𝐴←𝑎′ = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏, 𝐴 = 𝑎)︸                                                   ︷︷                                                   ︸
Counterfactual Prediction when 𝐴 = 𝑎′

| ≤ 𝛿

Here, 𝑌𝐴←𝑎 is the current prediction of the classifier, 𝑌𝐴←𝑎′ is the counterfactual prediction in a world where we set
the protected attribute of the individual to 𝐴 = 𝑎′, and 𝛿 ∈ [0, 1] is a fairness threshold that represents the maximum
degree to which a fair prediction can change as a result of this intervention.

We can set Pr(𝑌𝐴←𝑎 = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏, 𝐴 = 𝑎) = 1 since there is no intervention required. We can compute
Pr(𝑌𝐴←𝑎′ = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏, 𝐴 = 𝑎) by setting the protected attribute to 𝐴 ← 𝑎′ and propagating its effect on
the proxy 𝐵. Given the causal structure in Fig. 1, we can express this term as:

Pr(𝑌𝐴←𝑎′ = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏, 𝐴 = 𝑎) =
∑
𝑏′∈𝐵

Pr(𝑌 = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏 ′, 𝐴 = 𝑎′)︸                                               ︷︷                                               ︸
Prediction for 𝑏′

· Pr(𝐵 = 𝑏 ′ | 𝐴 = 𝑎′)︸                   ︷︷                   ︸
Proxy Strength

(1)

Taken together, a prediction𝑌 = ℎ(𝑥, 𝑏) is 𝛿-counterfactually fair if |1−∑𝑏′∈𝐵 Pr(𝑌 = ℎ(𝑥, 𝑏) | 𝑋 = 𝑥, 𝐵 = 𝑏 ′, 𝐴 = 𝑎′) ·
Pr(𝐵 = 𝑏 ′ | 𝐴 = 𝑎′) | ≤ 𝛿 The left hand side of this quantity is the probability the prediction flips as we intervene on
the protected attribute. In what follows, we denote it as 𝑝flip

𝑥,𝑏,𝑎
and refer to it as the flip rate.
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4 Anon.

The maximum flip rate we tolerate is defined by the fairness threshold 𝛿 . This threshold can be set on a task-by-task
basis. For example, if we using a model to screening resumes in a job application, then we could set 𝛿 = 0.2 to reflect
the “4/5ths rule” in U.S. employment discrimination law [28]. In what follows, we remain agnostic about the value of
𝛿 and evaluate the potential to detect discrimination over all possible thresholds 𝛿 ∈ [0, 1].
Discrimination Detection with Explanations Many rules and regulations that mandate explanations as an anti-
discrimination measure, based on the assumption that they help users identify and contest unfair predictions. We
evaluate such claims by formalizing our problem as a detection task. Given a model ℎ we associate each instance with:
• A “ground-truth” label 𝑔𝑖 |ℎ,𝛿 := I[𝑝flip

𝑥𝑖 ,𝑏𝑖 ,𝑎𝑖
> 𝛿] that reflects actual discrimination in the prediction; it is an indicator

the prediction is not 𝛿-counterfactually fair.
• A “prediction” label 𝑔𝑖 |ℎ,𝑒𝑖 that denotes user’s claim a prediction is discriminatory; it is derived from analyzing the

prediction alongside the explanation 𝑒𝑖 .
In what follows, we write 𝑔𝑖 := 𝑔𝑖 |ℎ,𝛿 , 𝑔𝑖 := 𝑔𝑖 |ℎ,𝑒𝑖 , and 𝑝

flip
𝑖 := 𝑝

flip
𝑥𝑖 ,𝑏𝑖 ,𝑎𝑖

when their dependencies are clear from context.
Although the probability that a prediction flips when intervening on the protected attribute is fixed for individuals

with identical features (𝑥, 𝑏, 𝑎), the actual outcome of this intervention is random. Assuming it follows a Bernoulli
distribution 𝐺𝑖 ∼ Bernoulli(𝑝flip

𝑥,𝑏,𝑎
), we can interpret 𝑔𝑖 in terms of hypothetical proportions: among 𝑁 individuals

(𝑥𝑖 , 𝑏𝑖 , 𝑎) , where each 𝑏𝑖 is drawn based on 𝐴 ← 𝑎′𝑖 , a 𝛿-counterfactually fair model would yield different predictions
for 𝛿𝑁 individuals. Since users only see one prediction for instance 𝑖 , we interpret 𝑔𝑖 |ℎ,𝑒𝑖 as their personal probability
the prediction would change under an intervention on 𝐴 [see e.g., 24, for more details about this interpretation].1 We
write this as 𝑔𝑖 |ℎ,𝑒𝑖 ≈ I[𝑝flip𝑖 > 𝛿].
Measures Given a model ℎ, and a set of 𝑛 individuals {(𝑥𝑖 , 𝑏𝑖 )}𝑛𝑖=0 and ground truth labels {𝑔𝑖 }𝑛𝑖=0, we can evaluate
the reliability of discrimination claims {𝑔𝑖 }𝑛𝑖=0 using standard performance measures for binary classification:
• TPR(𝛿) = | {𝑖: 𝑔𝑖=𝑔𝑖 |𝛿=1} || {𝑖: 𝑔𝑖 |𝛿=1} | , which measures how often users correctly identify discriminatory predictions;

• FPR(𝛿) = | {𝑖: 𝑔𝑖≠𝑔𝑖 |𝛿=0} || {𝑖: 𝑔𝑖 |𝛿=0} | , which measures how often users incorrectly label a fair prediction as discriminatory;

• PPV(𝛿) = | {𝑖: 𝑔𝑖=𝑔𝑖 |𝛿=1} || {𝑖: 𝑔𝑖=1} | , which indicates the internal reliability of discrimination claims.
We expect the following:
• Instance-Level Detection: Explanations can support individual claims when the claims are aligned with ground-truth

labels. In this case, we should have that 𝑔𝑖 |ℎ,𝑒𝑖 = 𝑔𝑖 |ℎ,𝛿 for any explanation 𝑒𝑖 where 𝛿 may change across users. We
would want to observe detection that is always correct, i.e., PPV(𝛿) = 100%, finds all cases of discrimination, i.e.,
TPR(𝛿) = 100%, and makes no false alarms, i.e., FPR(𝛿) = 0%. In practice, we may state that explanations could help
detect discrimination if we observe a PPV of 90% which would mean most of the selected predictions are indeed
discriminatory.

• Model-level Detection: Explanations could also support claims that a model discriminates by checking if the proportion
of unfair predictions over a set of instances exceeds a model-level threshold 𝜏 . This use case provides some room for
incorrect claims at the instance level. It is sufficient to estimate if the model discriminates for over 𝜏% of predictions. A
model that clearly discriminates can tolerate many false alarms while still being correctly identified as discriminatory.
Conversely, a clearly fair model can withstand some missed discriminatory cases. The closer the true discrimination
rate is to 𝜏 , the more reliable individual detection needs to be.

1If one prefers a different interpretation of probability statements, then𝑔𝑖 |ℎ,𝑒𝑖 can be reinterpreted; for example,𝑔𝑖 = 1 could be understood as indicating
a sufficiently large change in subjective strength of belief.
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FailureModes Usersmay fail to detect discriminationwith explanations due to flawed beliefs or flaws in explanations.
Given model ℎ and an explanation, the user may claim 𝑔𝑖 ≠ 𝑔𝑖 because:

RemaRK 1 (RecoveRy). Users may be given an explanation that does not reveal the prediction changes with the proxy

and that ℎ(𝑥𝑖 , 𝑏𝑖 ) ≠ ℎ(𝑥𝑖 , 𝑏 ′𝑖 ) for 𝑏
′
𝑖 ≠ 𝑏𝑖 . This is because there exist many different explanations for the same prediction,

e.g., 𝑒𝑖 , 𝑒 ′𝑖 such that 𝑒𝑖 hides the proxy but 𝑒
′
𝑖 shows it [13, 40]. This could lead the user seeing 𝑒𝑖 erroneously determine that

the counterfactual prediction never changes, i.e., Pr(𝑌𝐴←𝑎′𝑖
= ℎ(𝑥𝑖 , 𝑏𝑖 ) | 𝑥𝑖 , 𝑏𝑖 , 𝑎𝑖 ) = 1, and the prediction is always fair.

RemaRK 2 (MisinteRpRetation). Users may not know how to use explanations to support claims about discrimination,

i.e., to assess the flip rate 𝑝flip𝑖 . Even if they do, they might not know how to extract that information from explanation 𝑒𝑖
(e.g., there is no principled way of doing that when 𝑒𝑖 is a feature attribution explanation).

RemaRK 3 (Misspecified Beliefs about Causal Mechanism). User may have incorrect beliefs about the strength of

the proxy Pr(𝐵 | 𝐴), and incorrectly estimate the flip rate 𝑝flip𝑖 . With a fixed 𝛿 , this may lead them to become too sensitive

or too lenient on discrimination, making erroneous claims.

RemaRK 4 (Knowledge of PRotected Class). Users may not know the true value of the protected attribute 𝐴 = 𝑎𝑖

and think it is 𝐴 = 𝑎′𝑖 ≠ 𝑎𝑖 . This may lead them to estimate 1 − 𝑝flip𝑖 instead of 𝑝flip𝑖 , and make inaccurate discrimination

claims.

RemaRK 5 (Misspecified Causal Beliefs). Users may assume causal relationships that differ from those in Fig. 1.

As a result, they may fail to detect discrimination if they believe 𝐵 is not a proxy. Conversely, they could misattribute

discrimination if they are shown an explanation that highlights ℎ(𝑥𝑖 , 𝑏𝑖 ) ≠ ℎ(𝑥 ′𝑖 , 𝑏𝑖 ) and they believe 𝑋 is a proxy.

These failure modes are barriers to reliable detection as well as attribution. Each time we may find that explanations
fail, we could attribute the failure to one of the listed causes. We can remedy the first three failure modes by designing
better algorithms and procedures (e.g., methods to find all explanations, and procedures to collect protected attributes).
The latter two modes pertain to issues that are inherently human and will change across users and tasks.

3 Experimental Design

We describe an experimental design to evaluate the reliability of explanations as a tool for aiding discrimination detec-
tion. Our design is explanation-agnostic and may be adapted to any explanation method by changing the instructions
and the visual materials. We consider a simple task where: (1) we can teach participants the skills that we expect from
auditors and verify their understanding through comprehension checks; (2) we can manipulate and elicit participant’s
beliefs in the causal model from Fig. 1; (3) we can collect data to evaluate fairness under different assumptions and use
cases (e.g., for all 𝛿 ∈ [0, 1], with or without access to protected attributes, etc.).

Robot Classification Task We consider a task where participants are asked to audit a model that predicts the re-
liability of fictional robots for NASA. The model was created to inform NASA’s purchasing decisions by identifying
which robots are reliable versus defective. While robot reliability is determined by their body parts, the two manu-
facturers, Company X and Company S, design their robots with slightly different components. This difference could
lead to discrimination in the model’s predictions with respect to the manufacturing company. Since NASA is legally
prohibited from making decisions based on the company, participants must determine if the model’s predictions are
inadvertently discriminatory or not.
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6 Anon.

HeadShapeRound Square

BodyShape RoundSquare

AntennaNo Yes

BaseTypeWheels Legs

Fig. 2. Overview of robot characteristics. We show two robots to
cover all possible values of each characteristic. Our model pre-
dicts that each robot is reliable or defective using dummy variables
𝐵 = I[Antenna = Yes]) , 𝑋1 = I[HeadShape = Round], 𝑋2 =
I[BodyShape = Round] and 𝑋3 = I[BaseType = Wheels]) .

We cast the identity of the company as our protected
attribute 𝐴. We assume that the model predicts that a
robot is reliable using a set of four salient characteristics
shown in Fig. 2, namely: Antenna, HeadShape, BodyShape,
BaseType. We represent the input variables as: 𝐵 :=

I[Antenna = Yes], 𝑋1 := I[HeadShape = Round], 𝑋2 :=

I[BodyShape = Round], 𝑋3 := I[BaseType = Wheels]. In
this setup, we have 24 = 16 distinct combinations of in-
put variables (𝐵,𝑋 ), and 32 distinct robots (𝐴, 𝐵,𝑋 ). We
control all quantities that affect the discrimination by
specifying themodel’s predictions for each robot and the
prevalence of each robot (see Table 3 in Appendix B).

We can arbitrarily increase the number of distinct robots to show participants by introducing spurious features, such
as Paint ∈ (Red,Blue). In this way, we can ensure that participants are shown new kinds of robots. This is crucial for
three reasons: it prevents learning effects from seeing the same robot multiple times, which ensures that decisions are
based on feature relationships rather than memorized patterns, and captures real-world task where each case presents
unique characteristics.

We determine the ground-truth reliability for each robot 𝑌 by the random process:

𝐴,𝑋1, 𝑋2, 𝑋3 ∼ Bernoulli(0.5)

𝐵 | 𝐴 ∼ Bernoulli(𝑝𝐵 |𝐴) where 𝑝𝐵 |𝐴 is a set in Table 1

𝑌 ∼ Logistic(𝐵 + 𝑋1 + 𝑋2 + 𝑋3) .

We predict the reliability of each robot using a linear classifier that outputs “Reliable” for robots with an Antenna and
one of the following characteristics: a Round HeadShape, a Round BodyShape, or Wheels:

ℎ(𝐵,𝑋 ) = sign(6𝐵 + 4𝑋1 + 4𝑋2 + 3𝑋3 − 8) = I[𝐵 AND (𝑋1 OR 𝑋2 OR 𝑋3)] .

Given our labels, this model has an accuracy of 88% over all possible robots.

Discrimination Under the causal model and features we defined in our task, predictions have at most three flip rates
𝑝
flip
𝑥,𝑏,𝑎

. These flip rates are either 0 (if changing the proxy does not flip the prediction) or equal to 1−Pr(𝐵 = 𝑏 | 𝐴 = 𝑎′),
otherwise. This shows that the flip rate depends solely on Pr(𝐵 | 𝐴). We vary the strength of this relationship across
three regimes (see Table 1) to evaluate how proxy strength affects discrimination detection and claims 𝑔𝑖 |ℎ,𝛿 . This
variation is crucial because real-world proxies range from weak correlations (e.g., zip codes as proxies for race) to
almost perfect proxies (e.g., height as a proxy for gender). By testing different proxy strengths, we can assess whether
participants’ performance varies with proxy obviousness. In what follows, we also remain agnostic about the value of
𝛿 and evaluate the potential to detect discrimination over all possible thresholds 𝛿 ∈ [0, 1].
Explanations To provide a label 𝑔𝑖 and decide if the prediction ℎ(𝑥𝑖 , 𝑏𝑖 ) is discriminatory, users must estimate the flip
rate 𝑝flip𝑖 and compare it to their fairness threshold 𝛿 . When users have correct assumptions about the proxy strength
and causal structure, this requires checking whether changing the proxy from 𝑏𝑖 to 1 − 𝑏𝑖 flips the prediction. We test
whether explanations help with this by comparing two types of explanations: 𝑒𝑖 that include information about the
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proxy variable 𝑏𝑖 (potentially revealing if ℎ(𝑥𝑖 , 𝑏𝑖 ) = ℎ(𝑥𝑖 , 1 − 𝑏𝑖 )), and explanations 𝑒 ′𝑖 that do not use 𝑏 (providing no
insight about this relationship). In this way, we address RemaRK 1.

Proxy Strength Flip Rate

Regime 𝐴 = 0 𝐴 = 1 𝐴 = 0 𝐴 = 1

Weak 5% 10% 10% 5%
Medium 5% 55% 55% 45%
Strong 5% 95% 95% 90%

Table 1. Overview of parameters determining dis-
crimination claims under each proxy regime. Proxy
strength denotes Pr(𝐵 = 1 | 𝐴) , whereas flip rate
shows possible values of 𝑝

flip
𝑥,𝑏,𝑎

when ℎ (𝑥,𝑏) ≠
ℎ (𝑥, 1 − 𝑏) . In other cases, the flip rate is 0.

Procedure We implemented our task into an online user study that
is fully controllable and addresses all failure modes from Section 2.
Our study consists of four phases shown in Fig. 3. The Training and
Anchoring phases address RemaRK 2 and endow participants with
the knowledge we would expect from auditors.The Elicitation phase
directly measures participants’ beliefs about proxy strength and pro-
tected attributes, addressing Remarks 3 and 4.

Our setup allows to evaluate𝑔𝑖 across different fairness thresholds
𝛿 and different proxy strengths under the causal structure from Fig. 1.
This is because we can recompute the ground truth labels 𝑔𝑖 |ℎ,𝛿 . As
a a result, we may also assess the impact of incorrect causal beliefs
(and address RemaRK 5) by comparing claims 𝑔𝑖 to 𝑔𝑖 in the most beneficial scenario, where we assume participants
have both the correct knowledge about protected attributes and the causal mechanism.

4 Experimental Evaluation

Our experiment sought to characterize the viability and effectiveness of explanations in detecting algorithmic discrim-
ination. In particular, we sought to determine if individuals could use explanations to make reliable discrimination
claims across use cases in consumer protection. Our specific research questions include:

RQ1 Can participants use explanations tomake reliable claims for discrimination at an instance level? If so, this would
suggest that explanations are an effective mechanism to exercise individual rights (e.g., to contest predictions
that are unfair).

RQ2 Can participants who are shown explanations make reliable claims for discrimination at a model level? If so,
this would suggest that explanations could serve as an effective mechanism to audit models.

RQ3 How does the reliability of claims depend on the information that is available to participants? In particular,
explanations may be a viable mechanism only in use cases where participants have perfect information on the
protected attributes of each instance (e.g., in a third-party audit).

RQ4 How does the reliability of claims depend on the correctness of causal assumptions (e.g., does the strength of
the proxy match their beliefs)? In particular, explanations may be a viable mechanism only in settings where
participants have correct beliefs about the strength of the proxy variable .

RQ5 How does the reliability of detection change if we could provide participants with multiple explanations for each
prediction? If so, this would speak to the importance of diverse explanations [see, e.g., 59]

RQ6 Do participants behave in ways that are consistent and predictable? For example, will participants in each ex-
periment make identical claims? In this case, inconsistency would highlight a need for standardization.

4.1 Setup

We used a study design with 2×3 = 6 conditions in which we varied the strength of the proxy variable ∈ {Weak Proxy,

Medium Proxy, Strong Proxy} and the format of explanations ∈ {Single,Multiple}.
Manuscript submitted to ACM
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8 Anon.

1. Training: Participants were introduced to four key elements of the study:
robots, their components, a reliability prediction model, and the concept of dis-
crimination. We used counterfactual explanations as the explanation method
and presented them visually by highlighting modifiable robot parts. To explain
discrimination, we used examples of robots with company stickers, establishing
that predictions based on manufacturer identity were illegal. Participants com-
pleted a screening test where predictions were either discriminatory because
they could be changed with company stickers or fair because they depended on
robot parts. Participants then had three attempts to pass a comprehension quiz
or were otherwise dropped from the study.

2. Anchoring: We presented participants with a set of robots to anchor their
beliefs on the strength of the proxy and its impact on reliability. Each par-
ticipant saw 10 robots from each company. We arranged the robots so that
robots from each company shared the same features. We then assigned reli-
ability labels and antenna to robots to anchor their beliefs on the impact of
the proxy. The set contained two defective robots from Company X and
one from Company S. All robots from Company X had no antenna.
Company S had 1/3/5 robots with antennas depending on the regime. Par-
ticipants were explicitly told which feature distinguished the sets and were in-
formed that proxy-based predictions could be discriminatory since the antenna
can behave like the company sticker.

3. Elicitation: Participants were elicited for their beliefs on the protected class
𝑐𝑖 and the effect of the proxy 𝑢𝑖 on each possible robot. Participants saw a
total of 16 robots for (𝑋, 𝐵) . We elicited beliefs regarding protected class by
asking them to predict its manufacturer or state they don’t know. We coded
these as {0, 1, ?}. We elicited beliefs regarding the impact of the proxy by ask-
ing them how adding (or removing) an antenna from the robot would change
reliability, allowing them to answer (more, less, no effect, or unknown), coded as
{−1, 0, 1, ?}. Given the participant’s beliefs in the protected attribute, we could
recompute performance with participant-assumed attributes; we could also esti-
mate Pr(𝐵 | 𝐴) to match their belief in the causal mechanism of the proxy. By
storing reliability beliefs, we could analyze if these beliefs affect discrimination
claims.

4. Auditing: Participants judged if predictions were discriminatory. They were
shown an image of a robot, its prediction (always Defective), and one or
more of the closest counterfactuals. The participant aimed to select whether the
prediction was fair or unfair. This phase consisted of 16 rounds with all seven
unique defective robots shown in different colors (2 robots appeared twice). We
collected discrimination claims 𝑔𝑖 ∈ {0, 1}.

Fig. 3. All four phases of our experiment with their description.

1. Single: Participants were shown a single explanation for each prediction. This mimics real-world scenarios where
participants might be given “the best explanation” or just some explanation and need to decide about discrimination.
In this setup, an explanation might show no dependence on the proxy, but the prediction could still heavily rely on
it, making it potentially discriminatory.
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2. Multiple: Participants were presented with two competing explanations for each prediction, with one explanation
always containing the proxy variable when it existed. This setup represents a scenario with maximum insight into
the model’s decision-making process. In this setup, the participants know exactly which predictions depend on the
proxy and are potentially discriminatory.

Participants in each condition were shown a different set of robots to anchor their beliefs on proxy strength. The
sets differed by the number of robots in Company S that had antennas: 1 robot for theWeak Proxy conditions, 3 robots
for the Medium Proxy conditions and all five robots for the Strong Proxy conditions. Our evaluation also considered
different levels of knowledge in the task:

1. Auditor Baseline: Participants have no information about the true protected attributes and estimate the distribution
of the proxy based on the anchoring robot set. This is a realistic assumption where the protected attributes are not
readily available, and auditors have internal estimates of the true distributions.

2. Known Protected Attribute: Participants have perfect information about the protected attributes according to their
elicited beliefs. This maps to an information regime where the auditor has access to the protected attributes (e.g.,
filing claims from consumers, or a third-party audit where the protected attributes are stored according to the law,
such as audits (in New York) of employment decisions [36]).

3. Known Causal Mechanism: Participants have perfect information about the causal mechanism, i.e., the conditional
distribution of the proxy matches their elicited beliefs. This is an idealized assumption and allows us to estimate
best-case performance.

Counterfactual Explanations We let participants audit discrimination with counterfactual explanations. A coun-

terfactual explanation (CE) describes how to change the inputs to a model to obtain a different prediction. Given a
classifier 𝑓 : X → {0, 1} that assigns a prediction 𝑓 (𝒙) = 0, a counterfactual explanation is a set of changes 𝑒 (𝒙, 𝑓 )
that satisfies 𝑓 (𝒙 + 𝑒 (𝒙, 𝑓 )) = 1. When the set is minimal, we say that 𝑒 (𝒙, 𝑓 ) is a closest counterfactual. Given our task,
we can enumerate all possible explanations and select those that we choose to present.

Our interest in counterfactual explanations stems from three main benefits. First, they are easy to convey to partici-
pants because we can highlight the features that must change visually. Second, we can provide participants with clear
guidelines on how to use them to correctly flag unfair predictions (i.e., via a comprehension quiz). Third, they directly
relate to participant claims 𝑔𝑖 , and the fact they involve evaluating 𝑝

flip
𝑥,𝑏,𝑎

because they list the exact changes needed
to flip the prediction. These benefits are far more difficult to achieve when, for example, we explain predictions with
a feature attribution method because it is not clear how participants would use feature attribution scores to correctly
flag unfair predictions [29].

Procedure We recruited 126 participants through Prolific (20-23 per condition). All participants were fluent English
speakers from the United States, comprising 74 females and 52 males, ages 19-74 (mean = 35). Each experiment lasted
32 minutes on average. We assigned each participant to 1 of the 6 conditions. Participants who saw a Single explana-
tion were informed it may not be unique. Participants who saw Multiple explanations were informed they reveal all
ways in which a prediction can be flipped. We included a set of comprehension questions prior to the Auditing phase.
Participants who failed this quiz three or more times were excluded from the study (10 excluded participants; exclusion
rate of 8%). These quizzes ensured that participants understood how to apply each explanation and its guarantees with
respect to discrimination claims.
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10 Anon.

4.2 Results

Overall, our results show that participants cannot reliably detect discrimination with explanations under any setup.
The summary performance measurements of audits where participants were asked to flag discriminatory predictions
based on a single explanation can be found in Fig. 6.

On the Reliability of Discrimination Detection We first consider a setting with threshold 𝛿 = 0.2 – i.e., where we
wish to flag predictions that would change by over 20% given an intervention on protected group membership – given
its importance in U.S. employment law [36].

Fig. 4. Distribution of the Positive Predictive Value (PPV) at
threshold 𝛿 = 0.2 used in U.S. employment law [28] across
all proxy strength conditions assuming the ground truth
probabilities and causal mechanism of the proxy.

As seen in Fig. 4, PPV, a measure of reliability of partici-
pant claims, indicates poor detection performance across all
tested conditions. We would expect perfect, or at least very
high PPV, say ≈ 90%, meaning that participants’ detection is
generally trustworthy. To the contrary, we observe that even
in the Strong Proxy condition, where the proxy was the easiest
to spot and its presence in the explanationmost often indicated
discrimination, PPV was as low as 48%±4% (see the blue boxes
in Fig. 4). It was even lower, 28% ± 6% in the Medium Proxy

condition to hit 0% in theWeak Proxy condition where all pre-
dictions were fair at 𝛿 = 0.2. This means that participants were
correct in at most half of their discrimination claims. Further
analysis revealed that this low reliability was affected by both
missing most of the discriminatory predictions, and flagging fair predictions. In the Strong Proxy condition where
the results were the best, TPR reached only 44% ± 5% while maintaining substantial FPR (33% ± 5%). This means that
participants incorrectly flagged 2-3 fair predictions. They also missed at least 3 out of 5 all discriminatory predictions.

These results raise concerns about using explanations for discrimination auditing in practice. Without additional
assumptions or safeguards, humans both fail to detect most of discriminatory cases, and raise multiple false alarms.
This combination risks letting discriminatory practices continue and triggering unnecessary investigations that waste
resources and potentially harm legitimate practices.

This poor performance is not due to the particular fairness threshold we selected. As seen in the blue line in Fig. 6,
poor performance is observed systematically for all measures and almost all thresholds. This changes only at extreme
values. For sufficiently high thresholds, all predictions become fair and since participants did claim discrimination, their
performance drops. Conversely, at very low thresholds (𝛿 ≤ 5% that exemplify a “better safe than sorry” approach),
most proxy-dependent predictions are discriminatory. Since participants tend to flag these predictions, they achieve
high PPV (≈ 75%) but still maintain poor TPR and FPR of ≈ 30%.

On the Sensitivity to Protected Attributes A natural question is whether the poor detection performance stems
from a lack of knowledge of protected attributes. Perhaps participants reasoned about the hypothetical predictions
under wrong assumptions. To answer this question, we matched participants’ attribute selections from the Elicitation
phase with the corresponding predictions.

Our results (see Fig. 5) show only marginal improvements: at 𝛿 = 0.2, PPV increased to 39% ± 6% (Weak Proxy

condition) and 37%±3% (Medium Proxy condition) from the baseline of 28%, with neither change reaching significance
under Mann-Whitney U test (𝑝 > 0.1, 𝑈 ≥ 156.5). Only the Strong Proxy condition showed significant improvement,
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with PPV rising to 66% ± 7% from 48% ± 7% (𝑝 < 0.05, 𝑈 = 114.5). We found similarly slight improvements for other
measures: FPR dropped by approximately 10% (equivalent to ≈ 1 prediction), and TPR decreased by 6-7%, both across
all conditions. This suggests that participants sometimes chose not to flag discrimination even when their own beliefs
about protected attributes would warrant it. This often occurred when participants believed changing the proxy has
legitimate influence on reliability – e.g., on average, if participant believed the change in the CE affects robot reliability,
they claimed the prediction is fair in 64% of the cases whereas if they thought it has no effect – in 50% of the cases.

Fig. 5. Distribution of the Positive Predictive Value (PPV) at
threshold 𝛿 = 0.2 used in U.S. employment law [28] across
all proxy strength conditions and under different assump-
tions on participant knowledge: known protected attributes
(red), and known causal mechanism (green).

In total, knowledge of the protected attributes played a mar-
ginal role in detection performance. Even with access to these
attributes, auditors still missed many discriminatory cases and
raised multiple false alarms. As shown in Fig. 6, this perfor-
mance persisted across all 𝛿 values, except for very low thresh-
olds where most proxy-dependent predictions were discrimi-
natory. In these cases, participants correctly focused on such
predictions, leading to higher PPV (most claimswere accurate),
though their overall detection ability remained poor (low TPR
and high FPR).

On the Sensitivity to Causal Assumptions Our experi-
ment also allows us to evaluate how performance would im-
prove under best-case assumptions where humans have per-
fect information on the causal mechanism of the proxy. In this
case, we assume Pr(𝐵 | 𝐴) matches their beliefs. We found that this intervention significantly improved PPV at 𝛿 = 0.2

across all conditions, as seen in green in Fig. 5. In the Strong Proxy condition, PPV went from 48% ± 4% to 77% ± 7%

(𝑝 < 0.001, 𝑈 = 66.5). In the Medium Proxy condition it went from 28% ± 6% to 49% ± 8% (𝑝 ≤ 0.05, 𝑈 = 128.5). In
the Weak Proxy condition, PPV increased significantly above 0 to 61% ± 8%. This is because participants perceived a
stronger proxy relationship than existed (over half of the participants assumed Pr(𝐵 = 0 | 𝐴 = 0) = 0), and their dis-
crimination claims were often warranted under these beliefs. Still, neither PPV nor TPR/FPR ever reached a value we
would consider satisfactory, as seen in Fig. 6. Overall, these results point to the fact that the lack of poor performance
cannot readily be remedied by domain expertise.

On the Effect ofMultiple Explanations We next examined participants’ performance when they were given full in-
formation about the prediction by being shownMultiple explanations. In this setup, they knewwith certainty whether
the prediction can be flipped with the proxy or not. Such guarantees are rarely available in reality, but we make this
assumption to test if explanations could work in idealized circumstances.

In short, this manipulation did not lead to good performance as we show in the Appendix in Fig. 11. On average, PPV
was bounded by 40% across all conditions. TPR behaved irregularly but never exceeded 40%. FPR remained consistently
at least 30%. The only exception occured in the Weak Proxy condition with extreme values of 𝛿 ≤ 0.05 with PPV
reaching 77% ± 7% and TPR 63% ± 9% (𝑝 < 0.01, 𝑈 ≥ 220). However, this came at the cost of increased false positives
(FPR as high as 55% ± 8% at 𝛿 = 0.2). These results hold irrespective of the level of knowledge participants have, i.e.,
no knowledge (baseline), knowledge of protected attributes or knowledge about the causal mechanism of the proxy.
Overall, people appear to be incapable of using explanations reliably even under idealized knowledge conditions.
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12 Anon.

Fig. 6. Reliability of discrimination claims across all possible 𝛿 ∈ [0, 1] (right). We show the confidence intervals for PPV(𝛿), TPR(𝛿)
and FPR(𝛿) across all proxy strength conditions and under different assumptions on participant knowledge: baseline performance
(blue), known protected attributes (red), and known causal mechanism (green).

OnModel Audits Participants were unable to differentiate between cases when the model was fair or discriminatory.
In a task where we would say that a model discriminated if over 20% of predictions were discriminatory, our model
should be fair in the Weak Proxy condition and discriminatory in the Medium Proxy and Strong Proxy conditions.
Nonetheless, participants were at most marginally affected by the proxy strength, and labeled themodel discriminatory
across all conditions (13/21, 10/20, and 16/21 participants across Weak Proxy, Medium Proxy, and Strong Proxy condi-
tions, respectively). These proportions remained similar even when participants saw a comprehensive set of Multiple

explanations (13/17 for Weak Proxy, 13/19 for Medium Proxy, 12/19 for Strong Proxy participants claimed the model
was discriminatory). This suggests people generally equate the presence of a proxy with discrimination, regardless
of its strength. If we relied on explanations to judge models globally, this would unnecessarily block deployment of
multiple fair ones.

On the Consistency of Auditors andDecision Subjects Our evidence shows that participants’ claims were primar-
ily driven by the presence of proxy variables in explanations. As expected, participants claimed discrimination 25-46%
more frequently when explanations contained the proxy compared to when they did not (see Fig. 7). This effect was
even more pronounced (36-60%) when participants viewed Multiple explanations. The increased exposure to explana-
tions that contained the proxy in these conditions (14 instances versus 8 in the Single explanation conditions) led to a
30-47% increase in discrimination claims overall. These findings strongly suggest that proxy visibility directly impacts
discrimination claims.

While participants were responsive to the presence of the proxy variable in the explanation, they often exercised
nuance. In particular, we observed that participants consistently claimed that some predictions were “fair” even when
Manuscript submitted to ACM
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the CE contained the proxy were judged as discriminatory. This behavior appears to be influenced by three systematic
factors. First, their beliefs about robot reliability affected fairness judgments. Predictions were more likely to be labeled
as fair by up to 20% when participants believed the proxy indicated higher reliability. While this pattern shows high
variability (𝑝 ≈ 0.3), it consistently appears across proxy conditions and aligns with participants’ explicit statements
(e.g., It is not unfair to say that robots with antennas work better).The other two key factors are that participants assumed
different protected attributes, which led them to state no discrimination and misrepresented the true proxy strength.

Fig. 7. Increase in discrimination claims when explanations
contained the proxy versus when they did not. Mean val-
ues (red dots) show participants consistently identified the
proxy as a discrimination signal across all regimes.

Second, participants held false beliefs about the causal struc-
ture of the problem as described in RemaRK 3. We observed
steady, low FPR of ≈ 30% even under perfect assumptions
about participant knowledge.This effect can only be attributed
to labeling predictions that do not depend on the proxy as dis-
criminatory, falsely believing other features are proxies. This
is because we observe roughly the same FPR for 𝛿 ≈ 1, mean-
ing participants labeled predictions where ℎ(𝑏, 𝑥) = ℎ(𝑏 ′, 𝑥)
as discriminatory. This sentiment can be found in participants’
answers (e.g., saying I decided based on the body shape and the

base type). In reality, we found that 36 out of 61 participants
fell prey to these assumptions, including 8 participants who
labeled predictions where the proxy was not present as dis-
crimination. This belief makes sense but shows the danger of
interpreting the presence of the proxy as a single indicator of
discrimination.

4.3 Discussion

By using a controlled environment with clearly defined ground truth, we were able to precisely measure how expla-
nations fail to support discrimination detection. This approach provided participants with optimal conditions: clear
information about proxy mechanisms, explicit explanations showing counterfactual outcomes, and detailed instruc-
tions. The fact that explanation-based discrimination detection failed under these favorable conditions, or even when
adapting the ground truth to participant beliefs, suggests fundamental limitations of using explanations to detect dis-
crimination. We discuss this in more detail below.

Fundamental Detection Failure Auditing with either a single explanation or a comprehensive set of multiple ex-
planations does not allow humans to reliably detect discrimination. Neither does knowing the protected attribute of
the audited predictions, or correctly identifying the causal mechanism of the proxy. Participants detected more than
65% of the truly discriminatory cases (TPR), and had at most 77% correct detections (PPV), but only when their beliefs
were treated as correct. Otherwise, reliability of detection oscillated around 50% with false alarms consistently hover-
ing around 30% (FPR). To put that into perspective while being lenient on the participants’ performance, this means
every fourth individual that files a discrimination claim fails in court. This also means almost half of individuals whose
predictions were truly discriminatory miss this.

Lack ofAuditorAgreement One could try looking at the auditing performancewith respect tomodel discrimination
as more of a success. After all, the model which was discriminatory for most thresholds (when the proxy was medium
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and strong) would be determined as such by an average auditor. However, when it comes to individual performance,
the results look much worse. First, more than half of all the participants claimed the model with the weak proxy was
discriminatory when it was not (26/38 participants). Second, barely over half spot the model is discriminatory when it
used a medium proxy (23/39 participants) and three quarters of the participants when the model used a strong proxy
(28/40 participants). We observed a lack of overall agreement between participants who essentially operated on their
own beliefs about discrimination. This led to claims that were very rarely matching (Cohen’s 𝜅 ranging from 0.05 to
0.14 across all conditions). This is also seen when we analyze predictions individually and find that every prediction
was selected as discriminatory by at least 10% of the participants. Put together, if the same model or a set of predictions
were analyzed by two independent auditors, it could lead to two different results. A discriminatory model could then
be missed, and a fair model could be unfairly accused of discrimination.

The fundamental reason why explanations failed to aid discrimination detection is that they operate on individuals,
whereas fairness must be evaluated over groups of (hypothetical) individuals. This tension is well-documented in
formal definitions of fairness [63], and our experiments demonstrate how impairs human performance. Our analysis
revealed three specific challenges that emerged from this mismatch and were the direct causes of people’s failure:

Flawed Beliefs in the Causal Structure More than half of all participants (71 out of 118) fell prey to the beliefs
that some features combined with the proxy are evidence of discrimination. 17 of the participants also thought that
some combinations of features without the proxy can indicate discrimination. This led participants to incorrectly raise
false alarms. This also led participants to not detect discrimination because they looked for “stronger proof” (e.g., one
participant noted they looked for a combination of antenna and other features to claim discrimination).

Proxy Strength Misrepresentation Over half of the participants overestimated proxy strength. This is best seen by
the largely improved performance (PPV and TPR) under their own beliefs in the causal mechanismwhen the thresholds
are low. This led to many false positives in claiming discrimination. We can expect people to misrepresent the proxy
strength in reality too because it is rarely observable. This misrepresentation might lead to a claim that the whole
model is discriminating, while it is perfectly valid (like in the Weak Proxy conditions).

Real Outcome Interference Participants’ judgments were sometimes influenced by their beliefs about the relation-
ship between features and desirable outcomes. This led to errors. We observed this behavior across all conditions. For
instance, in the Weak Proxy condition with Multiple explanations, participants claimed predictions as fair in 52% of
the cases when they thought adding a proxy makes the robot reliable, and otherwise, only in 28%. Even though the
median increase was about 20%, as many as 78 out of all 118 participants made a claim like this at least once. We could
also see this sentiment in participants’ responses, saying e.g., It is not unfair to say ’robots with antennas work better’.

Limitations Our results are limited by two main factors that were beyond our control. First, our participants had
no prior training in statistics or probability. This might have affected their judgments, making them inconsistent with
respect to, e.g., proxy strength and the causal mechanism. This is especially important since fairness audits depend on
probabilistic claims. Second, every study run on paid-survey platforms such as Prolific has to deal with inattentiveness
or lack of motivation. Despite our best efforts, the task we introduced was abstract and gave no immediate feedback.
This could have made participants guess oftentimes and act inconsistently. They might have also had less incentive to
perform thoughtfully, contrary to real auditors who may be bound by law.
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5 Concluding Remarks

Our study demonstrates the fundamental limitations of using explanations for algorithmic fairness auditing. Through
controlled experiments with human participants (𝑁 = 126), we found that explanations fail to reliably assist in dis-
crimination detection, regardless of how much information they convey or if auditors know the protected attributes
or the general causal mechanism of the proxy.

Our findings extend to real-world auditing scenarios. This is because real-world scenarios present far greater com-
plexity, with more features, intricate relationships, and numerous plausible explanations to consider [20]. The failure
modes that compromise human performance in our simple setup – flawed causal reasoning, incorrectly estimating
proxy strength, and real outcome interference – are likely to persist or worsen with increased complexity. Further-
more, these individual-level failures may compound in real-world settings where multiple stakeholders must coor-
dinate their assessments, just like the compounded in our experiment. In total, this will lead to poor discrimination
detection performance in applied settings.

This result is strongly related to a growing body of regulations on algorithmic discrimination and transparency. In
recent years, jurisdictions worldwide have adopted two main approaches. The first approach emphasizes transparency
and explanation rights – see e.g., ECOA’s mandate for adverse action notices in lending [62] or provisions for a “Right
to an Explanation” in data regulation laws in the European Union [74], Brazil [12], and South Korea [38]. Mandatory
fairness audits represent the second regulatory approach, e.g. in Slovenia mandates for algorithm pre-implementation
[58], or in New York for third-party bias audits for automated employment decisions [36]. Similarly, the European
Union’s Digital Services Act requires algorithmic audits of “very large online platforms,” including non-discrimination
risk assessments [75]. Despite this momentum, there remains a lack of standardized practices for assessing algorith-
mic fairness as regulations provide limited guidance for how to conduct audits [46]. Our results highlight two critical
insights for policy. First, there is a need for standalone regulations specifically targeting algorithmic discrimination.
Current policy relying on explanations is unreliable even under controlled conditions (see also [33] for a legal discus-
sion). Second, while the “right to explanation” serves a valuable role in accessing other rights (as exemplified in EU
regulations), it should not be considered sufficient for preventing discrimination. Rather, it must be deployed alongside
robust anti-discrimination measures and systematic auditing procedures that do not solely rely on human interpreta-
tion of explanations.
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A Table of Notation

Notation Description
𝐴 Protected attribute (e.g., company identity)
𝐵 Proxy variable for the protected attribute (e.g., antenna)
𝑋 Features independent of protected attribute (e.g., other robot parts)
𝑌 True outcome variable (e.g., reliability)
𝑌 Predicted outcome from model ℎ

ℎ(𝑥, 𝑏) Model that predicts 𝑌 given inputs 𝑋 = 𝑥 and 𝐵 = 𝑏
𝜙𝑥,𝑏,𝑎 Level of discrimination/probability prediction flips when intervening on 𝐴
𝛿 Fairness threshold representing maximum allowed discrimination

𝛿min Minimum fairness threshold for evaluation
𝛿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 User’s internal fairness threshold for making discrimination claims
𝑔𝑖 |ℎ,𝛿 Ground truth label indicating discrimination in prediction 𝑖
𝑔𝑖 |ℎ,𝑒𝑖 User’s claim about discrimination for prediction 𝑖 given explanation E𝑖
𝐺𝑖 Random variable that determines if prediction 𝑖 flips when intervening on 𝐴, following Bernoulli(𝜙𝑥,𝑏,𝑎)
E𝑖 Explanation provided for prediction 𝑖

TPR(𝛿min) True positive rate for discrimination detection at threshold 𝛿min
FPR(𝛿min) False positive rate for discrimination detection at threshold 𝛿min
PPV(𝛿min) Positive predictive value for discrimination claims at threshold 𝛿min

Table 2. Notation used in the paper.

B Supplementary Material on Experimental Design

In this Section, we provide supplementary materials on our experimental design. This includes the exact list of robots
(points the model predicted on) with their closest counterfactual explanations in Table 3, and links to our GitHub
repository with the code for the experiment and the experimental data.

Features Prevalence Counterfactual Explanations
Antenna HeadShape BodyShape BaseType Company X Company S

No Square Square Legs 0.0071 0.0004 {Antenna,HeadShape}, {Antenna,BaseType}, {Antenna,HeadShape}, {BodyShape,BaseType}
No Square Square Wheels 0.016 0.0008 {Antenna}
No Square Round Legs 0.016 0.0008 {Antenna}, {BodyShape}
No Square Round Wheels 0.0297 0.0016 {Antenna}, {BodyShape}
No Round Square Legs 0.016 0.0008 {Antenna}, {BaseType}
No Round Square Wheels 0.0297 0.0016 {Antenna}, {BaseType}
No Round Round Legs 0.0297 0.0016 {BodyShape}, {BaseType}
No Round Round Wheels 0.0434 0.0023 {BodyShape}, {BaseType}
Yes Square Square Legs 0.0008 0.016 {HeadShape}, {BodyShape}, {BaseType}
Yes Square Square Wheels 0.016 0.0297 {Antenna}, {HeadShape}
Yes Square Round Legs 0.016 0.0297 {Antenna}, {BaseType}
Yes Square Round Wheels 0.0023 0.0434 {Antenna}
Yes Round Square Legs 0.016 0.0297 {Antenna}, {BodyShape}
Yes Round Square Wheels 0.0023 0.0434 {Antenna}
Yes Round Round Legs 0.0023 0.0434 {Antenna,BodyShape}, {Antenna,BaseType}, {BodyShape,BaseType}
Yes Round Round Wheels 0.0028 0.0523 {Antenna,BodyShape}, {Antenna,BaseType}

Table 3. Overview of closest counterfactual explanations over all robot types. We consider 16 robots defined by four binary attributes:
Antenna, HeadShape, BodyShape, BaseType. Each combination of characteristics (row) is predicted as predicted Reliable if it
has an Antenna and one of the following conditions: a Round HeadShape, a Round BodyShape, or Wheels. Otherwise it is predicted
Defective. Based on this specification, we obtain closest counterfactuals that allow flipping the prediction.
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B.1 Availability of data and material (data transparency)

Anonymized data from the experiments is available at https://anonymous.4open.science/r/cxai-93BB/results/results_
closest_competing.

B.2 Code availability (software application or custom code)

The code for our Flask study is available at https://anonymous.4open.science/r/cxai-93BB/.

1. Run pip3 install -r requirements.txt to install the necessary requirements.

2. Then run application.py and open the link to the localhost to start the study.

3. Parameters listed at the top of the file can be used to run the study in different conditions.

C Supplementary Experimental Results

Fig. 8. Example of a SHAP explanation in our study.

In this Section, we present the results of running our
study with feature-attribution SHAP explanations [56].
We also provide additional figures for our experimental
results from the main text.

C.1 Experiment with SHAP Explanations

We repeated our experiment with SHAP explanations
and obtained results aligned with the results on coun-
terfactual explanations. We recruited 23 participants in
the Strong Proxycondition (13 female, English speaking,
average age 40, 0% rejection rate, average completion time 40 minutes). The explanations were derived from the coef-
ficients of the linear classifier we used in the paper. We added a small noise to each SHAP value to make them unique
across the experimental trials. During the Training phase, participants saw 1 example where the model used the Com-
pany sticker only (unfair), 1 example where the Company sticker had a SHAP value of 0 (fair) and 2 examples where
the Company sticker had a non-zero value. Participants could select both fair and unfair answers in these cases and
were told the discrimination label is uncertain and whether its influence (the SHAP value) is high enough to make the
prediction depend on it. During the quiz, participants needed to order the robot parts based on their influence on the
prediction shown in a sample SHAP explanation (see Fig. 8) to make sure they understand the relative on influence
on prediction that SHAP values communicate. As seen in Fig. 9, all of our metrics were roughly the same across all
fairness thresholds 𝛿 with TPR and FPR of approximately 40% and PPV of 65%. This means that participant’s choices
were almost like a coin flip. This should not be surprising since there is no reliable method of determining fairness
using feature attribution explanations.

C.2 Experiments in the Main Text

Fig. 11 shows performance measures (PPV, TPR and FPR) across all thresholds 𝛿 ∈ [0, 1] in the conditions that used
Multiple explanations. We detail the results of these studies in Section 4.2. Fig. 12 shows that participants’ claims
depended on the presence of the proxy in the explanation also for Multiple explanations conditions. Finally, Fig. 10
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Fig. 9. Performance metrics across all fairness threshold 𝛿 values when participants were assisted by SHAP explanations. Refer to
Fig. 6 for the explanation of the plotted data. As seen, the detection is poor across all fairness thresholds with consistently high FPR,
and consistently low TPR, both around 40%. This results in low reliability of claims as measured by PPV.

(a) Single explanation (b) Multiple explanations

Fig. 10. Discrimination claims per individual predictions in each of the proxy regimes when participants saw a single explanation (left)
and multiple explanations (right). We can see that every prediction was judged as discriminatory by at least 10% of the participants.
Participants were also not in full agreement with any of the predictions. On average, the agreement was roughly 50%.

shows the lack of agreement between the participants we discussed in Section 4.2, detailing how often each of the
predictions used in the study was claim as discriminatory.
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Fig. 11. Refer to Fig. 6 for the explanation of the plotted data. As shown, baseline performance (blue) is poor across all thresholds,
with TPR not exceeding 50% and FPR around 30%, and sometimes exceeding this value. Knowledge of protected attributes (red)
yields significant gains for PPV for medium and strong proxies but is otherwise unhelpful. Assuming auditors’ beliefs about the
causal mechanism (green) provides the biggest gains for performance, especially internal reliability in terms of PPV. It still leads to
largely low TPR and moderate FPR. The latter metric remains problematic (around 30%) across all conditions, indicating persistent
incorrect assumptions about feature-protected attribute relationships regardless of the level of insight.

Fig. 12. Increase in discrimination claims when explanations contained the proxy versus when they did not. Mean values (red dots)
show participants consistently identified the proxy as a discrimination signal across all regimes. The strongest effect occurs for the
weak proxy because participants overestimated its strength.
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