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Abstract
Human decision-making is plagued by many systematic errors. Many of these errors can be avoided by providing decision 
aids that guide decision-makers to attend to the important information and integrate it according to a rational decision strat-
egy. Designing such decision aids used to be a tedious manual process. Advances in cognitive science might make it possible 
to automate this process in the future. We recently introduced machine learning methods for discovering optimal strategies 
for human decision-making automatically and an automatic method for explaining those strategies to people. Decision aids 
constructed by this method were able to improve human decision-making. However, following the descriptions generated by 
this method is very tedious. We hypothesized that this problem can be overcome by conveying the automatically discovered 
decision strategy as a series of natural language instructions for how to reach a decision. Experiment 1 showed that people 
do indeed understand such procedural instructions more easily than the decision aids generated by our previous method. 
Encouraged by this finding, we developed an algorithm for translating the output of our previous method into procedural 
instructions. We applied the improved method to automatically generate decision aids for a naturalistic planning task (i.e., 
planning a road trip) and a naturalistic decision task (i.e., choosing a mortgage). Experiment 2 showed that these automatically 
generated decision aids significantly improved people’s performance in planning a road trip and choosing a mortgage. These 
findings suggest that AI-powered boosting might have potential for improving human decision-making in the real world.

Keywords  Improving human decision-making · Boosting · Decision aids · Far-sightedness · Interpretable machine 
learning · Automatic strategy discovery

Introduction

Many researchers working on judgment and decision-mak-
ing (e.g., Tversky & Kahneman, 1974; Gilovich et al., 2002) 
have argued that human decision-making is plagued by many 
systematic errors known as cognitive biases (but see Gig-
erenzer, 1991; Gigerenzer et al., 2008). In particular, older 
people often come to regret the short-sighted decisions they 
made about their health, education, and finances when they 
were younger (Kinnier & Metha, 1989). Consistent with this 

observation, numerous experiments on intertemporal choice 
have consistently found that people’s decisions depend pri-
marily on the immediate outcomes of potential choices and 
underweight their more weighty long-term consequences 
(Milkman et al., 2008; O’Donoghue & Rabin, 2015). Those 
short-sighted choices can be traced back to the strategies 
people use to make decisions (Reeck et al., 2017). Therefore, 
one way to address such problems is to improve people’s 
decision strategies. This is an instance of boosting (Hertwig 
& Grüne-Yanoff, 2017). Boosting human decision-making 
has many benefits over delegating decisions to algorithms. 
Firstly, there are multiple areas, such as medicine and the 
judicial system, in which humans are and will continue to be 
the ultimate decision-makers for ethical reasons. Secondly, 
people have to make many subjective decisions that depend 
on their personal values. Helping people make better deci-
sions in these settings is crucial for increasing our society’s 
well-being.

Boosting can be implemented by training people or by 
supporting them while they make a decision. The benefits of 
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training on a simple task rarely transfer to the more complex 
problems people face in the real world (Sala & Gobet, 2017; 
Sala et al., 2019; Becker et al., 2021). One way to side-
step this problem is to provide people with decision aids 
that support them directly in those decisions that are to be 
improved (Fig. 1). Previous research showed that real-world 
decisions in the domains of finance and medicine can be 
improved by providing people with decision aids (e.g., a 
decision tree) that guide them through the application of 
clever heuristic that direct the decision-maker’s attention 
to the most essential pieces of information (Hafenbrädl 
et al., 2016). Recent work has developed algorithms for gen-
erating and visualizing decision trees automatically (Phillips 
et al., 2017; Rudin et al., 2022). However, equivalent tools 
do not yet exist for helping people solve complex planning 
problems. Designing decision aids for such problems by 
hand can be very tedious, and coming up with clever heuris-
tics can very difficult. As a first step toward addressing this 
problem, we recently developed a computational method for 
automatically designing decision aids for sequential decision 
problems that require planning (Skirzyński et al., 2021a). 
This AI-powered boosting method leverages Artificial 
Intelligence (AI) to derive smart decision strategies from 
a mathematical theory of optimal decision-making with 
finite time, limited time, and bounded cognitive resources 
(Lieder & Griffiths, 2020b). The decision aids constructed 
by this method were able to improve human decision-mak-
ing (Skirzyński et al., 2021a). However, using these deci-
sion aids is tedious because they do not explicitly specify 
the decision process directly. Rather, they specify a process 
for determining whether the next step the decision-maker 
is considering to take is consistent with the recommended 
heuristic. The goal of this article is to develop an improved 
method that can generate decision aids that directly describe 
the automatically discovered heuristic in natural language.

We hypothesized that step-by-step instructions for how 
to reach a decision would be significantly easier for people 
to follow than the decision aids generated by our previous 
method (Skirzyński et al., 2021a). After confirming that such 
procedural instructions are more interpretable and easier to 

follow than the previous version of our decision aids, we 
developed a new algorithm for transforming the output of the 
previous method (Skirzyński et al., 2021a) into procedural 
instructions. The extended method automatically generates 
step by step, natural language instructions for how to reach 
a decision. These instructions are generated from a pair of 
two inputs: (i) a model of the general structure of a particular 
(sequential) decision problem, and (ii) a dictionary of what 
the relevant components of the general problem are called 
in the concrete application. This approach is very general 
and can be applied to different kinds of decision problems. 
In particular, the two algorithms we utilized to set up our 
approach give rise to a new policy-agnostic method for inter-
preting reinforcement learning policies, which is an impor-
tant part of the problem known as explainable reinforcement 
learning (Puiutta & Veith, 2020; Dazeley et al., 2021). As 
a proof of concept, we demonstrate that our method can be 
used to make more far-sighted choices in two naturalistic 
decision-tasks: planning a road trip and choosing a mortgage 
(see Fig. 2a and b). We found that people can understand 
and follow the automatically generated procedural instruc-
tions in both tasks and consequently made better decisions. 
These findings suggest that AI-powered boosting can be very 
effective at improving human decision-making in naturalistic 
tasks.

The article is structured as follows. In the next section 
we provide further information on approaches striving to 
improve human decision-making and discuss the connec-
tions between our method and other approaches to deci-
sion support. In the third section, we show that procedural 
descriptions of planning strategies are better suited to 
improve human decision-making than the descriptions gen-
erated by the previous method (Skirzyński et al., 2021a). In 
the following section, we present a new method for auto-
matically generating procedural descriptions of planning 
strategies. In Section 5, we test the extent to which decision 
aids obtained with our method improve human decision-
making in more naturalistic decision problems. Lastly, we 
summarize and discuss our findings in Section 6.

Background

Reinforcement Learning

To understand the underlying principles and mechanisms of 
AI-powered boosting, we provide a handful of definitions 
for mathematical constructs that are used by this approach. 
Those constructs regard the theory of reinforcement learn-
ing that enables to compute solutions to sequential decision 
problems that are provably optimal. Moreover, these meth-
ods play an important role in our approach to discovering 
optimal cognitive strategies for human decision-making.

Fig. 1   AI-powered boosting relies on discovering optimal decision 
strategies by modeling decision problems as a metalevel Markov 
Decision Process and solving them with metalevel reinforcement 
learning (Griffiths et al., 2019)
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The first definition presents a structure that is a general 
model of decision-making problems called Markov Deci-
sion Process (see Definition 1). Representing a decision 
problem in terms of a Markov Decision Process becomes 
possible by specifying what states exist in this problem, 
what actions might be taken, how valuable (rewarding) 
each of the actions is in the states, and how the actions 
change the states form one to another.

Definition 1  (Markov Decision Process) A Markov 
decision process (MDP) is a tuple (S,A, T,R, �  ) 
where S  is a set of states; A is a set of actions; 
T(s, a, s�) = ℙ(st+1 = s� ∣ st = s, at = a) for s ≠ s� ∈ S, a ∈ A 
is a state transition function; � ∈ (0, 1) is a discount factor; 
R ∶ S → ℝ is a reward function.

Having modeled a decision problem as an MDP, we 
may further define a mathematical counterpart of a deci-
sion strategy, namely a policy (see Definition 2).

Definition 2  (Policy) A deterministic policy � is a function 
� ∶ S → A that specifies actions to take in each of the states 
in the MDP and a non-deterministic policy � is a function 
� ∶ S → Prob(A) that defines a probability distribution over 
the actions for the states in the MDP.

Then, expected reward (see Definition 3) serves to 
quantify the usefulness of policies (i.e. to quantify how 
valuable or rewarding they are).

Definition 3  (Expected reward) The reward rt represents 
the quality of performing action at in state st . The cumulative 
return of a policy is a sum of its discounted rewards obtained 
in each step of interacting with the MDP, i.e. G�

t
=

∞∑
i=t

� trt for 

� ∈ [0, 1] . The expected reward J(�) of policy � is equal to 
J(�) = �(G�

0
).

Fig. 2   Naturalistic decision-
tasks used in Experiment 2. 
a In the Road Trip task, the 
objective is to efficiently find an 
inexpensive route to a city with 
an airport. Participants can use 
a search engine to look up how 
costly it is to spend the night in 
different cities. b In the Mort-
gage task the goal is to choose 
the most affordable mortgage 
by considering interest rates 
for different time horizons. 
Participants can learn about 
the interest rates by clicking on 
appropriate boxes
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Finally, equipped with these formalizations of decision 
strategies and their quality in the problem modeled by the 
MDP, we need an approach for finding strategies whose 
quality is high. A family of methods which solve that prob-
lem and find policies with the highest reward is called rein-
forcement learning (see Definition 4).

Definition 4  (Reinforcement learning) Reinforcement 
learning (RL) is a class of methods that perform iterations 
over trials and evaluation on a given MDP to find the optimal 
policy �∗ which maximizes the expected reward (Sutton & 
Barto, 2018).

Modeling Planning as Information Acquisition

In our quest to improve human planning, we used a theo-
retical framework developed to study and improve human 
planning, namely the resource-rational theory of optimal 
human planning (Callaway et al., 2022b, 2018b). Accord-
ing to this theory, planning can be understood as a series 
of information gathering operations that gradually refine a 
person’s estimates of the short- and long-term consequences 
of alternative courses of action. This idea gave rise to an 
empirical paradigm (i.e., the Mouselab-MDP paradigm) that 
operationalizes human planning by the series of clicks made 
to collect information about the rewards hidden at different 
locations of the environment of a path planning task (see 
Fig. 3). As each click has a cost, finding the best possible 

path is a nontrivial problem. According to the theory, by 
collecting a sequence of clicks people made to decide which 
path is best, we gain an insight into people’s planning pro-
cess and the strategies they used.

Approaches to Improving Human Decision‑making

Interventions designed to tackle decision-making biases 
include educating people about rational decision-making 
(Larrick, 2004) and boosting people’s decision-making by 
conveying simple heuristics they can use to arrive at good 
decisions (Hertwig & Grüne-Yanoff,  2017; Hafenbrädl 
et al., 2016). In the first approach, harmful biases are tackled 
through motivating or incentivizing people to make better 
decisions by showing them what they could gain by adopting 
the principles of logic, probability theory, and expected util-
ity theory. The key limitation of this approach is that those 
principles place unrealistically high cognitive demands on 
people when they are applied to nontrivial real-world prob-
lems (Larrick, 2004). In response to the shortcomings of 
the first approach, the second approach directs people to use 
adaptive simple heuristics (Hertwig & Grüne-Yanoff, 2017; 
Hafenbrädl et al., 2016; Gigerenzer & Todd, 1999). These 
heuristics take advantage of common properties of decision 
problems, and allow the decision-maker to quickly make 
advantageous choices while being rather straightforward 
to understand. Two ways of conveying adaptive heuristics 
have been explored so far: teaching decision strategies and 
designing decision aids (Hafenbrädl et al., 2016; Hertwig & 
Grüne-Yanoff, 2017).

AI‑Powered Boosting

The general approach we followed in this study, called AI-
powered boosting, is to leverage artificial intelligence (AI) 
to improve on previous efforts to boost human decision-
making. The essence of AI-powered boosting is to employ 
machine learning to discover decision-making heuristics 
automatically and then convey them to people (Callaway 
et al., 2022a; Skirzyński et al., 2021a). This approach rests 
on defining efficient decision strategies and computing them 
by solving appropriate optimization problems. According to 
this approach, optimal strategies for human decision-mak-
ing do not attempt to maximize the expected outcomes (cf. 
Definition 3) because that would be intractable for people. 
Computing the optimal decisions for every possible situation 
is simply too computationally demanding for both people 
and computers (Simon, 1997; Van Rooij, 2008). Optimal 
decision strategies are instead defined as decision procedures 
that achieve the highest possible level of resource-rationality 
(Lieder & Griffiths, 2020b), which is defined as the expected 
utility of the choices that a given heuristic will make when a 
person uses it in a given environment minus the opportunity 

Fig. 3   Mouselab-MDP with increasing variance. Nodes in the Mou-
selab-MDP represent short-, mid-, and long-term consequences of 
potential actions where the black node is the starting position, and 
connections in the Mouselab-MDP symbolize “possible later con-
sequence” relation. Information on the consequences is represented 
numerically as rewards, and can be acquired by clicking on the 
nodes. Rewards are drawn from a normal distribution whose vari-
ance increases with the distance of the node from the starting node. 
Thus, rewards that are farthest from the starting position (long-term 
consequences) show the highest variance. As gathering information 
is costly, the agent’s goal in the Mouselab-MDP is to make as few 
clicks as possible to uncover the best possible course of actions with 
the highest total reward
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cost of the time and mental resources it expends to reach 
those decisions.

When faced with a new decision, people generally can-
not compute the resource-rational decision strategy for that 
scenario themselves, and doing so would be more demand-
ing than computing the optimal decision (Lieder & Grif-
fiths, 2020b, a; Rich et al., 2020). However, many resource-
rational strategies can be executed with minimal effort 
once they have been learned (Callaway et al., 2022a; He 
et al., 2021; He & Lieder, 2022; Lieder & Griffiths, 2020b, 
a). Moreover, people can learn to efficiently detect which of 
their strategies is best suited for the decision they are facing 
(Lieder & Griffiths, 2017). This makes deriving resource-
rational strategies for specific decisions people frequently 
face and conveying them to people a promising approach to 
improving human decision-making (Callaway et al., 2022a). 
Researchers interested in improving human decision-making 
can derive resource-rational strategies by leveraging artifi-
cial intelligence to compute the optimal policies of metalevel 
Markov Decision Processes (Lieder et al., 2017; Callaway 
et al., 2018a; Griffiths et al., 2019). Having solved such a 
problem, the result is a function for choosing the next plan-
ning operation according to information revealed by previ-
ous planning operations, called a metalevel policy.

Formally, AI-powered boosting (Callaway et al., 2022a) 
proceeds by modeling the problem of selecting an optimal 
sequence of cognitive operations as a Markov Decision 
Process (Sutton & Barto, 2018), leverages reinforcement 
learning to derive the optimal policy for selecting planning 
operations from that model, and then conveys this policy to 
people. There are two different approaches for doing so: via 
intelligent cognitive tutors (Callaway et al., 2022a; Consul 
et al., 2022) and via AI-generated decision aids (Skirzyński 
et al., 2021a) (see Fig. 1). Intelligent cognitive tutors train 
people to internalize the metalevel policy so that they can 
subsequently apply the automatically discovered decision 
strategy independently without further assistance. By con-
trast, AI-generated decision aids display a description of 
the automatically discovered decision strategy while people 
make their decisions.

AI-powered boosting has been shown to be a promising 
approach for improving human planning skills (Callaway 
et al., 2022a). The intelligent tutors presented in Callaway 
et al. (2022a) taught people how to efficiently plan in the 
environment shown in Fig. 3. After each planning operation 
performed by participants (i.e., a click uncovering a num-
ber), the tutor either praised them for following the optimal 
planning strategy, or penalized them by forcing to wait an 
amount of time proportional to the suboptimality of their 
planning operation. This procedure significantly improved 
people’s planning skills when they interacted with a dif-
ferent, transfer environment. Subsequent work employed 
intelligent cognitive tutors that teach people by showing 

video demonstrations of the automatically discovered strat-
egy (Consul et al., 2022; Mehta et al., 2022). Consul et al. 
(2022) developed intelligent cognitive tutors that improved 
people’s planning in very large versions of the environment 
illustrated in Fig. 3.

Here, we extend and evaluate a recent AI-powered boost-
ing method that conveys automatically discovered strategies 
through automatically designed decision aids (Skirzyński 
et al., 2021a). The original version of this method comprises 
four steps.

The first two steps are the same as in Callaway et al. 
(2022a): the problem of selecting an optimal sequence of 
planning operations is modeled as a Markov Decision Pro-
cess (MDP), and then reinforcement learning algorithms are 
utilized to find the optimal strategy from this model. This 
is where the first input to AI-powered boosting mentioned 
in the Introduction is required: the model of the decision 
problem. Here, we model decision problems in the Mouse-
lab-MDP framework (Callaway et al., 2017, 2022b). This 
is a very general framework for modeling problems which 
involve sequentially processing, integrating, and selecting 
multiple pieces of information. This makes our approach 
applicable to a wide range of decision problems.

In the third step, a set of logical primitives is created, 
and an imitation learning algorithm called AI-Interpret uses 
these primitives to generate an interpretable description of 
the optimal strategy as a logical formula. Importantly, the 
formula generated by AI-Interpret is expressed in conjunc-
tive normal form, that is a disjunction of conjunctions, which 
can be naturally expressed as a decision tree. Due to that, 
after the outputted description is automatically translated to 
natural language via a predefined primitives’ dictionary in 
the fourth step, it is naturally formed into a static flowchart 
(see Fig. 4). This flowchart evaluates to 1 (perform) or 0 (do 
not perform) for each action and each possible state people 
may encounter, and guides people through decision-making. 
The fourth step also introduces the second input to AI-pow-
ered boosting mentioned in the introduction: a dictionary 

Fig. 4   Sample flowchart obtained via the AI-powered boosting inter-
vention from Skirzyński et al. (2021a). The flowchart expresses a far-
sighted planning strategy in the Mouselab-MDP task with increasing 
variance
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of the relevant problem components. Our previous work 
(Skirzyński et al., 2021a) introduced a set of logical predi-
cates capable of representing multiple planning strategies 
(Skirzyński et al., 2021b) used in the Mouselab-MDP, and 
hence in multiple planning problems that can be represented 
in this formalism. By translating these predicates into the 
elements of the problem (e.g. graph-theoretic is_leaf 
predicate could mean long-term consequences of actions), 
our approach generates problem-specific natural language 
instructions instead of logical formulas. Like previously, 
successfully fulfilling this step relies on the researcher’s 
knowledge of the problem and understanding of the Mou-
selab-MDP paradigm. For more complex problems, such as 
chess playing, it is also possible that new predicates need to 
be created and then translated.

Still, despite the success of AI-powered boosting in 
improving human decision-making through static descrip-
tions (Skirzyński et al., 2021a), we hypothesized that more 
naturalistic tasks may require a more easily interpretable 
representation of the decision strategy. In the next section, 
we present an experiment suggesting that procedural instruc-
tions are more effective than the decision aids constructed 
by the original version of boosting presented by Skirzyński 
et al. (2021a).

Experiment 1: Procedural Descriptions 
of Planning Strategies Are More 
Interpretable Than Static Descriptions

A key challenge of AI-powered boosting is to convey an 
abstract and potentially complex planning strategy to people. 
To support people effectively, the description of the strategy 
should be easy to understand. The description presented by 
the decision aid can either be static or procedural. We call 
a family of descriptions that express a (planning) strategy 
by listing conditions under which certain actions can be 
taken static descriptions. A decision tree is one example 
of a static description, and a decision set (a set of rules) is 
another example. In both cases, a sequence of conditions 
that describe the environment tell the decision-maker when 
it is allowed to take which actions. A decision tree is the 
most extreme instance, since the conditions may be mani-
fold, but specific actions have to be always coded inside the 
tree, whereas the actual actions either perform (1) or do not 
perform (0) the planning operation under consideration (see 
Section 2.4). In contrast to static descriptions, one can define 
procedural descriptions that express (planning) strategies 
in terms of an ordered list of actions that need to be taken 
sequentially according to the order. A program is a primary 
example of a procedural description where the subroutines 
specify the actions, and their positioning in the program (top 
to bottom) defines the ordering.

The intervention introduced in Skirzyński et al. (2021a) 
made an important hidden assumption about the preferred 
way of conveying planning strategies to people, choosing 
static descriptions as the output. However, a more intuitive 
assumption is that procedural descriptions facilitate teach-
ing planning strategies to a greater extent. If this were the 
case, then it might be possible to make AI-powered boost-
ing substantially more effective by generating procedural 
descriptions rather than static descriptions. To find out if it 
would be worthwhile to develop algorithms for generating 
procedural instructions, we first tested whether procedural 
descriptions of planning strategies are more interpretable 
than static descriptions.

To do so, Experiment 1 was designed to determine if par-
ticipants are more successful in applying a planning strat-
egy when this strategy is expressed in terms of procedural 
instructions or the static descriptions used by Skirzyński 
et  al. (2021a). To answer this question, participants in 
Experiment  1 received decision aid on how to solve a 
sequential decision problem. One half of the participants 
received the static descriptions generated by the original ver-
sion of the method (Skirzyński et al., 2021a) and the other 
half received hand-crafted procedural instructions. The main 
goal of Experiment 1 was to compare people’s ability to 
follow procedural versus static instructions. We therefore 
asked participants to execute the described strategy as accu-
rately as possible. As a result, group differences in the task 
performance should result primarily from differences in the 
comprehensibility of static versus procedural descriptions.

Methods

Task

The template for the experimental task was the Mouselab-
MDP paradigm (Callaway et al., 2017, 2022b). In this task, 
participants have to choose between six possible paths, each 
of which involves a series of 3 steps. People can gather infor-
mation about how much reward they would receive for visit-
ing a location by clicking on it for a small fee. The objec-
tive is to balance expenses while finding a rewarding path. 
Skirzyński et al. (2021a) demonstrated that automatically 
generated static descriptions of planning strategies can boost 
participants’ performance across multiple versions of that 
task. We adopted the experiment with a static description 
for the most demanding strategy for our purposes.

To create an unbiased comparison of static descriptions 
and procedural instructions, we created an experiment where 
the participants’ only task is to execute the described strat-
egy. Participants were instructed to select planning opera-
tions (i.e., clicks) according to the described strategy. To 
minimize the risk that participants misunderstood the task 
as collecting rewards, participants were not informed that 
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the numbers correspond to rewards and could neither pick 
a path nor collect any rewards. This resulted in a sequen-
tial clicking task in which participants’ only objective was 
to click nodes according to presented instructions. The 
original static descriptions described the locations to click 
based on attributes derived from graph theory, for example 
whether a location is on the current most rewarding path 
and whether a location can be found at a certain depth of 
the graph. These kinds of descriptions can be difficult to 
understand for laymen and usually require training. To sim-
plify the procedure, each attribute was visually presented 
as a color. Based on the uncovered rewards, we computed 
if an attribute applied to a location and, if so, the location 
was marked with the corresponding color (see Fig. 5). One 
location could be tagged with multiple colors. The attributes 
used in the static descriptions and in the procedural instruc-
tions were replaced by the corresponding color names. The 
manipulations described had two main advantages. First, 
participants were not tempted to neglect the clicking instruc-
tions and apply their own clicking strategy, as we concealed 
the original planning task. Second, the instructions required 
only knowing the colors, giving very little room for misin-
terpretations compared to more complex attributes in the 
original task. In sum, this manipulation eliminated possible 
limitations of the original task and let us compare the degree 
of interpretability of both static descriptions and procedural 
instructions more directly. The environment participants 
interacted with was the color-coded Mouselab-MDP and was 
displayed on the left of the experiment’s screen, whereas the 
instructions appeared on the right of the screen (see Fig. 5). 
The static descriptions were the same as the ones used in 
Skirzyński et al. (2021a) except that the attributes were 

now color-coded. The procedural instructions were hand-
crafted and described the same clicking strategy as the static 
descriptions. The instructions were as follows: “Click the 
nodes that contain green and orange until you find a +10. 
Then click the nodes that contain blue and pink.”.

Dependent Variables

To measure whether a participant understood the instruc-
tions, we counted the number of clicks that were consistent 
versus inconsistent with the strategy they were instructed 
to follow. Both measures were combined into one metric 
called click agreement, which we defined as the proportion 
of consistent clicks out of all performed clicks, that is

In the event that a participant finished the trial before having 
clicked all the instructed locations, the expected number of 
missed clicks counted toward the inconsistent clicks. We 
calculated the number of missed click as the average number 
that the instructed strategy performed in 1000 simulations 
minus the number of clicks performed by the participant. 
Click agreement is reported in percent. In addition, we meas-
ured the expected value of the score participants would have 
received if they had performed their clicks in the Mouselab-
MDP task. By definition, the expected score is the sum of 
rewards along the best path identified by the participant’s 
clicks minus the cost of those clicks. Because the expected 
value of unrevealed rewards was zero, the expected reward 
of a path connecting the start node was equal to the sum of 

(1)agreement =
nconsistent

nconsistent + ninconsistent
.

Fig. 5   Experiment 1: The experimental screen as shown to partici-
pants in the flowchart condition. On the right, the Mouselab-MDP 
task with color-coded nodes. Each color represents a node property, 
which can change depending on the uncovered values. On the right, 

the color-coded flowchart depicting a specific clicking procedure. In 
the alternative condition the flowchart is replaced with procedural 
instructions
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the rewards revealed on that path. The cost of the partici-
pant’s clicks was 1 point per click.

Procedure

Participants were randomly assigned to a static descrip-
tions or a procedural instructions condition. Both condi-
tions started with an instructions block, in which the task 
was introduced and motivated as a pass-code test required 
to enter an extraterrestrial planet that can only be accessed 
by following specific instructions. This was followed by an 
attention check consisting of 3 multiple-choice questions, 
a block explaining the procedure and the instructions (see 
Appendix 1) and a final attention check consisting of 3 mul-
tiple-choice questions. After this, participants engaged in a 
single practice trial in which they were instructed to click 
locations marked with orange. They received feedback on 
the correctness of their clicks and when to end the trial. 
Lastly, there was a block of 10 test trials and a small demo-
graphic survey. The minimum time required to spend on a 
trial was ten seconds. Participants were informed that they 
would start with a bonus of $2 and lose 20 cents for each 
trial in which they made an inconsistent click or quit early. 
Neither their current amount of bonus nor the score was 
displayed in the task. In addition, all participants received a 
base payment of $1.

Participants

We recruited 21 people for the static descriptions condition 
and 21 people for the procedural instructions condition on 
Amazon Mechanical Turk (average age: 35.9 years, range: 
18–65 years; 21 female). The experiment lasted 11.9 min on 
average. Our predefined exclusion criterion, which excludes 
individuals who do not perform any click in half of the test 
trials, did not apply to any participant.

Results

The mean click agreement was 68.8% (Median: 59.8%, 
SD=22.9%) in the static descriptions condition and 85.2% 
(Median: 92.0%, SD=20.5%) in the procedural instruc-
tions condition, as illustrated in Fig. 6a. The variable was 
not normally distributed; we thus employed a one-sided 
Mann-Whitney-U test. We found that click agreement 
was significantly higher in the procedural instructions 
condition ( A = .69;1 U=137, p=.018). Click agreement 
and expected score were positively correlated (r(40)=.45 
p=.003). Accordingly, the mean expected score was 
higher in the procedural instructions condition (M= 6.6, 
SD=2.7; see Fig. 6b) than in the static descriptions con-
dition (M= 5.5, SD=2.6), although this difference was 
not statistically significant (d=0.41; t(40)=-1.3, p=.09). 
The learning curves for click agreement and expected 
score over the ten trials can be found in Appendix 2 
(see Fig.  10). Furthermore, participants assisted by 
procedural instructions were able to reach their deci-
sions significantly faster than participants assisted by 
static descriptions (21.0 s vs. 31.6 s; d=0.95, t(40)=3.1, 
p=.002). Moreover, we compared the performance of 
the two experimental groups to a control group ( N = 60 ) 
that was instructed to maximize their score in the Mou-
selab-MDP task without being assisted by a decision 
aid.2 The click agreement in both, the static descriptions 
condition ( A = .93 ; U=93, p=<.001) and the procedural 
instructions condition ( A = .95 ; U=59, p=<.001) was 

Fig. 6   Experiment 1: a Pro-
cedural instructions are more 
interpretable than static descrip-
tions (p=.018). The plot shows 
the mean click agreement of 
participants of the experimental 
conditions (blue and red) and a 
control condition (gray). b Par-
ticipants assisted by procedural 
instructions had higher expected 
scores than participants assisted 
by static descriptions (p=.09). 
The expected score that par-
ticipants would have received if 
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1  For non-parametric tests, we report the common language effect 
size A, which describes the probability that a randomly chosen mem-
ber of group 1 scores higher on the dependent variable than a ran-
domly chosen member of group 2 (Ruscio 2008)
2  The control condition was part of Experiment 3 of our previous 
work (Skirzyński et al. 2021a, b)
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significantly larger than in the control condition (M= 
31%, SD=16%). This also applied to the expected score 
which was significantly larger in the static descriptions 
condition (d=0.49, t(79)=1.9, p=.027) and the procedural 
instructions condition (d=0.9, t(79)=3.6, p=.<001) than 
in the control condition (M= 4.2, SD=2.6).

Discussion

The experiment was designed to compare people’s abil-
ity to follow procedural versus static instructions on how 
to make a plan. We deliberately reduced the potentially 
confounding effect of participants’ general decision-
making competency, domain knowledge, insights into 
the specific decision problem, and opinions about which 
strategy might be best. To achieve this, we chose a highly 
abstract task and instructed all participants to follow the 
instructions as accurately as possible. We can therefore 
interpret the observed differences in task performance pri-
marily in terms of the comprehensibility of the instruc-
tions. In accordance with our hypothesis, we found that 
procedural instructions were more helpful for people 
than static descriptions. Even though the final expected 
score obtained in the experiment did not differ signifi-
cantly between the conditions, the group which utilized 
the procedural instructions was both faster and numeri-
cally more accurate in applying the described strategy. The 
main reasons why the noticeable numerical difference in 
accuracy was not statistically significant might be that our 
sample size was rather small relative to the high variance 
of the rewards in this particular task. The comparison to 
a control group showed that both decision aids signifi-
cantly improved participants’ adherence to the instructed 
strategy and the corresponding gain in expected score. 
One possible explanation for the results we observed is 
that static descriptions underutilize people’s capacity to 
comprehend and execute structured, abstract procedures 
(Miller et al., 1960). This interpretation suggests that the 
static descriptions were unnecessarily detailed, long, and 
repetitive.

We acknowledge that the optimal strategies for some 
difficult problems could be so complex that they cannot 
be approximated well by any verbal description. Apart 
from those cases, the results of Experiment 1 should also 
hold for more complex tasks because the difference in the 
amount of effort required to follow static versus procedural 
instructions would be even larger for larger tasks. Peo-
ple’s increased compliance with the near-optimal strategy 
and their faster decisions found in Experiment 1 thus sug-
gest that it is worthwhile to extend our AI-based boosting 
method to procedural instructions because people appear 
to be much more willing and able to follow them.

AI‑Powered Boosting with Procedural 
Descriptions of Optimal Decision Strategies

As mentioned in Section 2.4, the original version of AI-
powered boosting (Skirzyński et  al.,  2021a) generates 
static descriptions in form of a flowchart (decision tree) for 
verifying whether a candidate planning operation is con-
sistent with an optimal planning strategy. A key limitation 
of this approach is that it does not explicitly tell people 
which planning operations to perform but requires them 
to come up with a good planning operation themselves and 
then verify their hypothesis. Motivated by the results of 
Experiment 1, we now present an algorithm for transform-
ing the output of AI-Interpret into a procedural descrip-
tion of how to plan that explicitly states which planning 
operation should be performed first, second, third, and 
so on. By coupling AI-Interpret with this new algorithm, 
we obtain a general method for describing any RL policy 
through procedural instructions. Our method is very gen-
eral because AI-Interpret is a policy-agnostic method that 
only utilizes demonstrations of the policy to describe it. 
It therefore contributes not only to the field of boosting 
human decision-making but also to the field of explain-
able reinforcement learning (Puiutta & Veith, 2020; Daze-
ley et al., 2021). Notably, both AI-Interpret (Skirzyński 
et al., 2021a) and our new algorithm compute approxima-
tions to the optimal policy and the flowchart, respectively. 
AI-powered boosting hence generates lossy simplifica-
tions of the policies computed by dynamic programming 
or reinforcement learning. However, those simplifications 
are not only easier to grasp than static descriptions (see 
Experiment 1), but they also achieve their objective to 
improve human decision-making, as will we show in the 
following sections.

Later in this article, we will focus on the application of 
our new method to AI-powered boosting rather than stand-
ard RL tasks. This section hence presents our two major 
technical contributions. In the first subsection, we detail 
DNF2LTL — our algorithm for transforming disjunctive 
normal form logical formulas into procedural descriptions. 
In the second subsection, we present AI-powered boosting 
extended with this algorithm.

Generating Procedural Descriptions of Planning 
Strategies

The original output of AI-Interpret that is utilized by AI-
powered boosting is a Disjunctive Normal Form formula 
(DNF; see Definition 9). Our algorithm, which we call 
DNF2LTL, transforms such formulas into the procedural 
format of Linear Temporal Logic (LTL; see Definition 5). 
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DNF2LTL operates in two phases. In the first phase, it 
modifies the input disjunctive normal form formula into an 
entity called a procedural formula (see Definition 8), that 
is an expression in a specific from of linear temporal logic. 
In the second phase, the procedural formula is pruned to 
remove as many unnecessary predicates as possible to 
obtain the possibly simplest procedural description of the 
automatically discovered strategy. We formally define the 
output of our algorithm in the next section.

Procedural Formulas

Procedural formulas generated by our algorithm are special 
cases of Linear Temporal Logic (LTL) formulas extended 
with two additional operators.

First, LTL itself is a type of propositional logic that allows 
expressing processes that change in time (see Definition 5).

Definition 5  (Linear Temporal Logic) Let P be the set of 
propositional variables p (variables that can be either true or 
false), let ¬,∧,∨ be standard logical operators for negation, 
AND, and OR, respectively, and let �,�,� be modal opera-
tors for NEXT, UNTIL, and UNLESS, respectively. Linear 
temporal logic (LTL) is a logic defined on (potentially infi-
nite) sequences of truth-assignments of propositional vari-
ables. LTL formulas are expressions that state which of the 
variables are true, and when they are true in the sequence. 
Whenever this agrees with the actual truth-assignment in an 
input sequence, then we say that a formula is true.

Formally, for � and � being LTL formulas, we define a 
formula to be expressed in LTL inductively: � is an LTL 
formula if � ∈ P ( � states that one of the variables is true 
in the first truth-assignment in the sequence), � = ¬� ( � is 
a negation of an LTL formula), � = � ∨ � ( � is a disjunction 
of two LTL formulas), � = � ∧ � ( � is a conjunction of two 
LTL formulas), � = �� ( � states that LTL formula � is true 
starting from the next truth-assignment in the sequence) or 
� = ��� ( � states that LTL formula � is true until some 
truth-assignment in the sequence where LTL formula � 
becomes true).

We extend the standard definition of LTL to allow more 
natural transition from decision trees to procedural instruc-
tions that, as we found in Experiment 1, are easier for peo-
ple to follow. To do so, we add a Hold operator that allows 
introducing a default stopping condition (see Definition 6), 
and a Loop operator that defines which part of the procedure 
to repeat (see Definition 7).

Definition 6  (Hold modal operator) The HOLD operator � 
is a unary operator in the linear temporal logic. LTL formula 
�� states that � is true at least for the first truth-assignment 
in the sequence of truth-assignments, and then eventually 

becomes false. HOLD operator is the UNTIL operator with 
a default until condition (“until it is no longer satisfied”).

Definition 7  (Loop modal operator) The LOOP operator 
� is a binary operator in the linear temporal logic. LTL for-
mula ��� states that( i) part of � is an LTL formula � , (ii) 
if � is replaced with some number of NEXT � operators 
�� ∧⋯ ∧ �� , then the new � is true across the whole 
sequence of truth-assignments. In other words, the LOOP 
operator states that in order for LTL formula � to be true and 
satisfy all truth-assignments in the sequence, LTL formula 
� inside of � needs to be repeated the appropriate number 
of times (form a “loop”). This formula corresponds to truth-
assignments in the sequence that disagree with �.

Finally, by adding the introduced operators to the LTL 
formalism, we obtain procedural formulas (see Definition 8).

Definition 8  (Procedural formula) We say that f is a pro-
cedural formula if and only if f is an expression written in 
linear temporal logic where the propositional variables are 
predicates h ∶ S ×A → {0, 1} for some set of states S and 
some set of actions A , and where the modal operators are 
� (NEXT), � (UNTIL), � (UNLESS), � (HOLD), and � 
(LOOP).

Transforming Disjunctive Normal Form Formulas 
into Procedural Formulas

In the first phase, DNF2LTL generates a procedural for-
mula (see the previous section) out of a DNF formula (see 
Definition 9).

Definition 9   (Disjunctive Normal Form)  Let 
fi, h ∶ X → {0, 1} for i ∈ ℕ be binary-valued functions 
(predicates) on domain X  . We call f1(x) ∨ f2(x) ∨⋯ ∨ fn(x) 
a disjunction of predicates and f1(x) ∧ f2(x) ∧⋯ ∧ fn(x) a 
conjunction of predicates. We say that h is in disjunctive 
normal form (DNF) if h is a conjunction of disjunctions of 
predicates fi.

To do so, our algorithm accepts four main inputs: the set 
of trajectories that led to the creation of the DNF formula, 
a set of predicates that could serve as the until or unless 
conditions, a set of predicates which are unwanted in the 
procedural formula, and, naturally, the DNF formula itself.

Definition 10  (Trajectory) A trajectory � = [�0,… ,�N−1] 
is a sequence of N state-action pairs �i = (si, ai) with 
si ∈ S, ai ∈ A, i = 0,… ,N − 1.

The trajectories (see Definition 10) play the role of the 
sequences of truth-assignments from Definition 5, whereas 
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the set of predicates for until/unless conditions and the 
DNF formula define the building blocks out of which 
the procedural formula would be constructed. The other 
remaining parameter is optional, and in case of a failure 
in producing an output, the algorithm is ran again without 
removing the redundant predicates. On a high level, our 
algorithm exploits the idea that a DNF formula is satisfied 
when at least one of its conjunctions is satisfied. It iterates 
over the trajectories to discover the dynamics of changes 
in truth values of the conjunctions, and uses the conjunc-
tions, the found dynamics, and the candidate until/unless 
conditions to generate procedural formulas.

During the first phase, DNF2LTL generates an initial 
procedural description in four steps. In the first step, the 
algorithm extracts potential subroutines from the inputted 
DNF formula. In the second step, the algorithm determines 
the order in which those subroutines should be performed. 
In the third step, the algorithm computes the logical condi-
tions for transitioning from each step to the next. Finally, 
in the fourth step, our method connects the subroutines 
with the appropriate conditions into a complete procedural 
description and outputs the result. Algorithm 1 presents a 
pseudocode that implements the first phase of DNF2LTL 
and the following paragraph provides a technical descrip-
tion of each of these four steps in greater detail. We relate 
this description to the pseudocode by listing its relevant 
line numbers in brackets. Readers who are primarily inter-
ested in the big picture and the application to boosting 
human planning can skip these technical details. 

Step 1:	� DNF2LTL starts by dividing the DNF formula 
into a set of conjunctions and removing all the 
unwanted predicates [Lines 3–4].

Step 2:	� Then, it iterates over the trajectories and for each 
trajectory records the sequence of conjunctions 
that were true for that trajectory so that the whole 
DNF formula could be true across all the state-
action pairs within it. Our algorithm then creates 
a transition graph where conjunction ci is con-
nected with conjunction cj if there is at least one 
trajectory� where the value of ci changed from true 
to false at the same moment when the value of cj 
changed from false to true [Line 9]. The transition 
graph is used to generate maximum length 
sequences of conjunctions ci1ci2 … cin to capture 
the possibly fullest transition evidenced in the data 
[Line 10]. The last predicate in this sequence (i.e., 
cin ) either has no outgoing connections in the tran-
sition graph or connects to one of the cij s in which 
case the sequence ends with a special loop symbol 

that indicates which ij that is. The resulting maxi-
mum length sequences are used to define equiva-
lence classes for the trajectories. These equiva-
lence classes represent potential dynamics of how 
the conjunctions change their truth values so that 
the full DNF formula was satisfied. Each trajec-
tory, treated as a sequence of conjunctions of the 
DNF formula, is then assigned to a number of 
equivalence classes. Namely, trajectory � repre-
sented by sequence s is assigned to all equivalence 
classes e for which s is a subsequence of e. For 
instance if � is represented by sequence c1c3 , it 
could be assigned to equivalence class 
c1c2c3c4 LOOP c2 [Line 11]. This whole process 
in Step 2 is performed to generate candidates for 
procedural descriptions.

Step 3:	� Then, the algorithm transforms unempty equiva-
lence classes into procedural formulas. It does so 
by using the trajectories in the class [Line 13] to 
iteratively find UNTIL operators (UNTIL condi-
tions) that could separate each of the elements in 
the sequence representing the class. During one 
iteration, DNF2LTL searches for the UNTIL con-
dition separating a pair of subsequent conjunc-
tions. Possible candidates for UNTIL conditions 
are the allowed predicates provided as an input to 
the method and 2-element disjunctions of those 
predicates [Input P], i.e. we hand-engineer pos-
sible operators a priori. For a pair of subsequent 
conjunctions cici+1 , the matching conditions are 
such whose truth value changes from constantly 
false, while ci is true, to true, when ci+1 true. We 
select the UNTIL condition among matching con-
ditions as the ui that maximizes the likelihood 
of the trajectories in the equivalence class under 
c
1
UNTIL u

1
AND NEXT … c

i
UNTIL u

i
AND NEXT TRUE , i.e. the 

formula generated so far [Lines 21–24]. This pro-
cess allows us to select a condition that we know 
is appropriate (belongs to input P), and that is the 
most likely under the data. If there is no matching 
condition, the algorithm adds the default UNTIL 
condition — the HOLD operator or, if some 
predicates were removed from the formula, tries 
again with the original formula [Lines 25–29]. If 
some trajectories have a conjunction representa-
tion shorter than the representation of the class, 
the algorithm also adds an UNLESS operator after 
the UNTIL operator, and searches for the UNLESS 
condition in a similar way. If there are no match-
ing conditions in input P, FALSE is selected as the 
condition so that to allow excessive planning and 
prevent UNLESS to be met. This process models 
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a situation when the formula allows early stop-
ping [Lines 29–40]. Having set the condition(s), 
the generated LTL subformula is attached to the 
formula built so far via the NEXT operator [Lines 
42–44]. The algorithm then iterates [Line 15]. If 
the last pair of conjunctions from the sequence 
representing the equivalence class contains a con-
junction and a loop symbol, this symbol is trans-
formed into the LOOP operator (see Definition 7) 
and the conjunction and the loop operator are 
joined through the NEXT operator [Lines 15–20]. 
If there are demonstrations that end before the 
loop, the UNLESS operator is added in the same 
way as before [Line 19].

Step 4:	� After generating the procedural formulas for each 
of the equivalence classes, the final procedural for-
mula is returned as a disjunction of these formulas 
[Line 49]. Note, however, that only one of the ele-
ments in the disjunction is returned by DNF2LTL 
after it performs pruning (see below).

Our algorithm captures a special type of procedural 
formulas. For a DNF formula with only one conjunction, 
the structure of the output can be described by the regular 
expression

where P may be substituted with either of the input allowed 
predicates or their 2-element disjunction, and Φ may be 

(2)
[� Φ ∧ � | Φ � P (� P) ∧ �]+[� Φ | Φ � P | � P](� P)

substituted with an arbitrary conjunction of those predi-
cates. The expression given in Eq. 2 thus generates proce-
dural formulas in the form of a sequence of NEXT operators, 
where subsequent conjunctions are separated with UNTIL 
conditions (and/or UNLESS conditions) or accompanied by 
the HOLD operator. The formula ends with the last NEXT 
operator or with a LOOP operator.

Pruning

After our algorithm generates a procedural formula Ψ in the 
first phase, it enters the second phase. During the second 
phase, DNF2LTL prunes the predicates appearing in the 
conjunctions of Ψ . Recall, however, Ψ is a disjunction of 
procedural formulas. Because of this reason, pruning occurs 
for each element of that disjunction separately. To do so, 
DNF2LTL maps each procedural formula �i of the disjunc-
tion Ψ onto a distinct binary vector bi . Each element of bi 
is the truth value of one of the predicates appearing in the 
conjunctions making up psii . Our algorithm iterates over bi s 
and in each step performs a greedy optimization. Concretely, 
for each consecutive predicate of �i the corresponding entry 
of bi is set to zero if and only if removing that predicate 
increases the likelihood of the trajectories under the pruned 
description relative to the unpruned description. Some predi-
cates increase the likelihood and are consequently pruned. 
After performing this optimization for each bi (and �i ), the 
algorithm outputs the pruned �i for which the likelihood was 
the highest as the final procedural description.

Fig. 7   AI-powered boosting with decision aids conveys automatically 
found planning strategies through automatically generated procedural 
instructions. Automation in the former area is achieved by modeling 
the problem as a metalevel MDP and solving it with metalevel rein-
forcement learning. Automation in the latter area rests on (i) utilizing 

an imitation learning algorithm AI-Interpret that constructs a DNF 
formula of predefined predicates to describe the strategy, (ii) apply-
ing the DNF2LTL method that transforms the DNF into a formula in 
LTL, (iii) translating the output into natural langauge using a prede-
fined predicate-to-expression dictionary
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Extending AI‑Powered Boosting to Procedural 
Descriptions

Following the result on human preference toward procedural 
descriptions of planning strategies, we extended the vanilla 
AI-powered boosting method by adding our DNF2LTL algo-
rithm (see Fig. 7). Instead of generating static, flowchart 
descriptions of optimal decision strategies, our extended ver-
sion performs AI-powered boosting with procedural descrip-
tions of optimal decision strategies. Originally, AI-powered 
boosting models the decision problem theoretically, finds the 
optimal policy for that model and relies on the AI-Interpret 
algorithm to find a static description of this policy. Lastly, 
it translates this description to natural language (see Sec-
tion 2.4). In the new version of AI-powered boosting, we 
transform the description generated by AI-interpret into a 
program-like procedural description of logical primitives 
using DNF2LTL. We translate these descriptions into natural 
language instructions only after this transformation. In total, 
our new method comprises five steps: (1) modeling the plan-
ning problem, (2) finding the optimal strategy through that 
model, (3) creating a description of that strategy in form of 
a logical formula, (4) changing the formula to a procedural 
formula, (5) translating the procedural formula to natural 
language instructions.

To evaluate our extension of the general AI-powered 
boosting method, we applied it to discover and teach the 
optimal planning strategy for the three-step planning task 
illustrated in Fig. 3. This planning task presents a version 
of the Mouselab-MDP paradigm (see Section 2.2) created 
by Lieder et al. (2019) where the variance of the possible 
rewards is small in the first step (immediate consequences), 
becomes slightly larger in the second step (short-term 
consequences), and much larger in the third step (long-
term consequences). In this scenario, people often neglect 
inspecting the long-term consequences of their actions (Jain 
et al., 2021; Callaway et al., 2022b; Lieder et al., 2019). By 
contrast, the optimal planning strategy for this environment 
takes a far-sighted approach to decision-making that would 
be beneficial in the real world. We hypothesized that our 
extended AI-powered boosting approach may represent this 
strategy in a number of more naturalistic decision problems, 
and help people improve their decision-making therein.

In applying the extended AI-boosting method to new 
problems, we completed steps 1 to 4 using the same meth-
odology and the same parameters as in Skirzyński et al. 
(2021a), but focused specifically on the Mouselab-MDP 
with increasing variance structure. In step 4 we selected 
candidate predicates for the until and unless conditions 
using the domain-specific language introduced in Skirzyński 
et al. (2021a). In step 5 we adapted the predicate-dictionary 
introduced in Skirzyński et al. (2021a) to work on proce-
dural descriptions and be domain-specific, depending on the 

problem that AI-powered boosting is to provide decision 
support on. Concretely, the procedural description is cre-
ated by separating the formula into steps, where each step 
is a part of the formula between two NEXT operators (or 
the part between the beginning of the formula and the first 
NEXT operator or the part between the last NEXT operator 
and the end of the formula). The steps are then separately 
translated according to the alignment of LTL operators and 
predicates in the step, using the mentioned domain-specific 
dictionary. The whole description is returned as an enumera-
tion of those translations.

Concretely, each step is translated according to the fol-
lowing logic: if there is at least one non-negated predicate in 
a step (other than TRUE), the translation always begins with 
the template “ACT​pred(OBJ, REW)”, where ACT​ is sub-
stituted with a domain-specific action word, and pred(OBJ, 
REW) is substituted with a domain-specific translation of 
predicate pred that contains OBJ as the object word rep-
resented by nodes in the Mouselab-MDP, and REW as the 
reward word represented by numbers hidden underneath the 
nodes. For instance, the action word could be “Look up”, 
the object word could be “hotels”, the reward word could be 
“the prices” and the predicate could capture the property of 
being positioned in the last level from the start node of the 
Mouselab-MDP. The translation would then read “look up 
the prices of the most distant hotels”.

If there are any negated predicates in a step, they are 
translated afterwards. The translations of those predicates 
themselves are listed in bulletpoints following the template 
“Do not ACT​:”. Special predicates include the always TRUE 
predicate, which is translated to “Stop planning right away 
or ACT​ some random OBJ and then stop planning” (because 
the available planning operations always include both click-
ing the nodes and terminating), and always FALSE predicate, 
which is translated using the template “Do not ACT​ any-
thing” (because the always FALSE predicate appears in the 
description only on its own — for the “no-action” strategy).

For the translation of the temporal operators, when a step 
includes an UNTIL operator with condition cond(OBJ, 
REW), the translation template becomes “Repeat this step 
until cond(OBJ, REW)”. If there is an UNLESS operator 
with condition cond(OBJ, REW) in a step, the translation 
of the step starts with the text “Unless cond(OBJ, REW), 
in which case stop at the previous step”. If the there is a 
HOLD operator in a step, the translation of the step is added 
the following text “Repeat this step as long as possible”. 
Finally, if there is a LOOP operator with expression EXPR 
in a step (which can only occur in the last step), the algo-
rithm matches the number of the step in which expression 
EXPR appeared the latest, say NUM, and adds the template 
“GOTO step NUM” to the translation. The exact translation 
for the predicates in our DSL and the rules governing how 
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the steps are translated can be found in our project’s reposi-
tory in the translation.py file.

For our purposes, the final procedural formula we 
obtained was

Although the above algorithm is carefully crafted and 
depends on the character of the predicates included in the 
step, it also contains a number of placeholders. Having filled 
those placeholders with predicate or operator translations 
from the domain-specific dictionary, it is possible to obtain 
strategy descriptions that accommodate for other problems. 
We treat Experiment 2 as a proof of concept that shows this 
for one class of problems, and adapt the dictionary such 
a way, as to have our method output instructions people 
understand. In more detail, the specific dictionary we used 
to transform this formula into task-dependent instructions 
was informed by pilot studies in which we tested multiple 
options and selected wording that resulted in the highest 
overall compliance. These natural language instructions are 
detailed in the next section, in which we assess the benefits 
of conveying the found strategies in behavioral experiments.

Experiment 2: Boosting Human Performance 
in Naturalistic Decision‑making 
and Planning Tasks with AI‑Generated 
Decision Aids

Our previous work (Skirzyński et al., 2021a) showed that 
the static descriptions generated by AI-Interpret improve 
the performance of individuals in the Mouselab-MDP task. 
However, those improvements were lower in environments 
which required more complex planning strategies. This was 
partly due to the fact that static descriptions of complex 
strategies are more difficult to understand. Experiment 1, 
which in fact tested the interpretability of the most complex 
strategy of Skirzyński et al. (2021a), showed that procedural 
instructions are easier to understand than static descriptions. 
In addition, the results of Experiment 1 suggest that our 
updated decision aids come with additional benefits over 
static descriptions. First, it takes less time to follow proce-
dural instructions than to use decision aids requiring you to 
evaluate each planning step individually. Second, in con-
trast to static descriptions, procedural instructions require 
no introduction on how to apply them.

Equipped with these improvements, we test in this section 
whether decision aids generated by our extended AI-powered 
boosting method can enhance human performance in tasks 
that are more naturalistic than those used by Skirzyński et al. 

(3)
among(not(is_observed, has_largest_depth) �

(are_leaves_observed ∨ is_previous_observed_max)

(2021a). Concretely, we evaluate our approach on two natu-
ralistic tasks. In the Road Trip task (Callaway et al., 2022b), 
participants are asked to plan an inexpensive trip by look-
ing up hotel prices across cities visited during the trip (see 
Fig. 2a). In the Mortgage task, participants are asked to 
choose a mortgage based on the interest rates of the avail-
able options in the first year, the following five years, and the 
following 15 years, respectively (see Fig. 2b). Similar to the 
Mouselab-MDP task with increasing variance, the rewards 
in the Road Trip task vary the most at the potential final 
destinations. This reward structure favors far-sighted plan-
ning. This task allows us to test if AI-powered boosting can 
help people become more far-sighted because previous work 
found that human planning in this task is more short-sighted 
than the optimal planning strategy (Callaway et al., 2022b). 
The same is also true of the Mortgage task. We designed this 
task so that the most long-term financial consequences of 
choosing a mortgage are the most crucial for the total cost. It 
can therefore be seen as a more naturalistic measure of peo-
ple’s shortsightedness in intertemporal choice (O’Donoghue 
& Rabin, 2015; Meier & Sprenger, 2010).

To test the benefits of using our extended AI-powered 
boosting approach, we conducted a large-scale online experi-
ment in which participants were presented with the Road 
Trip task and the Mortgage task. To measure the benefits 
conferred by our AI-generated decision aids, we compare the 
performance of people being assisted by the automatically 
generated decision aids that conveyed a far-sighted strategy 
described in the previous section against the performance of 
a control group making decisions without a decision aid. We 
did not include a condition with static instructions because 
Experiment 1 conclusively showed that static instructions are 
less effective than procedural instructions. In Experiment 2, 
we also overcome the main limitation of Experiment 1 by 
studying how beneficial AI-powered boosting might be in 
real-world settings where people can choose to ignore the 
decision aid. Thus, instead of requiring participants to com-
ply with the recommended strategy, Experiment 2 provides 
people with a decision aid and allows participants to freely 
decide how they want to make their decisions.

Methods

Participants

We recruited 111 people on Prolific. The mean duration of 
the experiment was 18.1 min in the control condition and 
17.9 in the experimental condition. We excluded 2 par-
ticipants (1.8%; both in the experimental condition) who 
needed more than 3 quiz attempts in one of the two quizzes. 
This yielded 54 participants for the control condition (aver-
age age: 38.0 years, range: 19–74 years; 39 female) and 55 
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participants for the experimental condition (average age: 
35.6 years, range: 18–70 years; 37 female).

Tasks

Participants were engaged in two different planning tasks. 
The Road Trip task (see Fig. 2a) asked people to plan a 
route from a starting location to one of multiple airport cit-
ies. Each city on the route requires the traveler to rent a 
hotel for the night. The participant’s task was to efficiently 
find a route with low accommodation costs. To do so, the 
participant could look up the price of the cheapest hotel in 
a city for a $10 fee by typing the city name into a search 
engine. Hotel prices were drawn from a uniform distribution 
over the values {$30, $35, $40, $45} and airport hotel prices 
were drawn from a uniform distribution over the values 
{$260, $290, $320, $350, $380} . In addition, one randomly 
selected airport city offered a price of only $20. A route 
could be submitted after selecting a sequence of roads con-
necting the start city with an airport city.

The Mortgage task (see Fig. 2b) asked people to choose 
the cheapest mortgage out of three options presented in a 
table. Each mortgage was defined by three different interest 
rates: the interest rate for the fist year (2022), the interest 
rate for the following 5 years (2023–2027) and the interest 
rate for the 25 years after that (2028–2052). Three different 
mortgages were presented: 1. A mortgage whose interest 
rates increased over time. The interest rates were drawn from 
normal distributions with means 0.5%, 1.5% and 2.5% for 
the three time periods, respectively. 2. A mortgage whose 
interest rates stayed constant over time. The interest rates 
were drawn from a normal distribution with mean 1.5% for 
all three time periods. 3. A mortgage whose interest rates 
decreased over time. The interest rates were drawn from nor-
mal distributions with means 2.5%, 1.5% and 0.5% and for 
the three time periods, respectively. All distributions had a 
standard deviation of 0.44%. The minimum value of an inter-
est rate was set to 0. The mortgage with decreasing interest 
rates offered the lowest overall interest rate payments and 
thus represented the best choice. Participants could reveal 
up to three different interest rates for no fee by clicking on 
the corresponding table cell. At each point in the task, the 
participant could decide for one mortgage plan and proceed 
to the next trial.

Outcome Measures

We quantified far-sightedness by examining which infor-
mation participants gathered in what order. We defined 
far-sighted planning as gathering information about the 
most long-term consequences first (i.e., the prices in air-
port cities in the Road Trip task and the interest rate for the 
last 25 years in the Mortgage task). We therefore measured 

far-sightedness by the proportion of such far-sighted plan-
ning operations among the first k planning operations, where 
k denotes the number of pieces of information that are avail-
able about the most long-term consequences. We call this 
measure the far-sightedness quotient (FSQ). For example, 
consider a Road Trip trial that includes two possible final 
destinations: Choosing these two final destinations in the 
first 2 clicks results in an FSQ of 1. Choosing one final des-
tination and one stopover in the first two clicks results in an 
FSQ of 0.5. If a person performed fewer planning operations 
than there were far-sighted planning options, k was reduced 
to the number of performed planning operations. The values 
are reported as percentages.

We utilized the click agreement metric from Experi-
ment 1 (see Section 3.1.2) to capture how well participants 
applied the far-sighted planning strategy recommended by 
the AI-generated decision aid. Whether a performed plan-
ning operation is consistent with the far-sighted planning 
strategy depends on the strategy’s stopping rule. The far-
sighted planning strategy stops planning if it encounters the 
best possible long-term outcome, which is given by a hotel 
price of $20 in the Road Trip task and by an interest of 0% 
in the Mortgage task.

In addition, we quantified participants’ planning success. 
In the Road Trip task was measured the score per trial which 
was defined as the sum of lookup fees and route costs sub-
tracted from the initial budget of $500. In the Mortgage task, 
we measured participants’ performance by whether they 
selected the mortgage plan with decreasing interest rates 
because its total cost was always the lowest.

Procedure

Participants were randomly divided into an experimental 
group and a control group. Each condition consisted of 
a Mortgage task block and a Road Trip task block, and a 
final demographic survey. The order in which the two task 
blocks were presented was randomized across participants. 
Both task blocks opened with instructions on the task (see 
Appendix 3), followed by a multiple-choice quiz on the task, 
an additional instructions page displayed only in the experi-
mental condition (see Appendix 3), and eight trials of the 
actual task. The instructions of the Road Trip task explicitly 
stated that there is always a hotel in one of the airport cit-
ies with a rate of only $20 per night. Participants received 
a bonus of 2 pence for every 100 points scored in the Road 
Trip task, or 5 pence per point scored in the Mortgage task. 
Additionally, everyone received a base payment of £1.5. In 
the experimental condition, participants were assisted by our 
AI-generated decision aids. These decision aids were intro-
duced as “Advice for scoring a high bonus” on the additional 
instructions page. Participants were told that the decision 
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aids convey a near-optimal strategy for gathering informa-
tion to arrive at a good decision. Participants were asked 
to try to understand the advice of the decision aid and how 
it can be applied to the task at hand. In addition, the AI-
generated decision aids were displayed in the task trials at 
the top in red font with the note: “Advice to achieve a high 
bonus” (see Fig. 8a and b).

As described above, the AI-generated decision aids com-
prised procedural instructions for how to reach a decision. 
The procedural instructions for the Mortgage task were 
“Click the most long-term interest rates that you have not 
clicked yet. Repeat this step until all the long-term interest 
rates are clicked or you have encountered the lowest possible 
interest rate.” The procedural instructions for the Road Trip 
task were “Look up the prices of the most distant hotels that 

you have not looked up yet. Repeat this step until all the 
distant hotels’ prices are looked up or you have encountered 
the lowest possible hotel price.”

Analysis

We performed one-sided Mann-Whitney-U tests for group 
level comparisons according to our hypotheses that the 
experimental group would plan more far-sightedly and score 
higher than the control group. The study was pre-registered.3

Fig. 8   Experiment 2: The Road 
Trip task (a) and the Mortgage 
task (b) with corresponding 
AI-generated decision aids as 
presented to the experimental 
condition. Only participants in 
the experimental condition were 
assisted with decision aids

3  https://​aspre​dicted.​org/​JRD_​D7Z
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Results

As illustrated in Fig.  9a and b, the experimental group 
planned significantly more far-sightedly than the control 
group in both tasks (Road Trip task: A = .75 ; U=741, 
p=<.001, Mortgage task: A = .78 ; U=658, p=<.001). In 
the Mortgage task, the automatically generated decision aid 
increased participants’ average FSQ from 50.8% in the con-
trol condition to 83.3% in the experimental condition (medi-
ans: 47.6% vs. 100%). In the Road Trip task, the AI-gener-
ated decision aid increased the average FSQ from 35.1% in 
the control condition to 63.8% in the experimental condition 
(medians: 32.3% vs. 75%). In a follow-up analysis, we found 
that participants who had encountered the minimum airport 
price in one trial of the Road Trip task planned significantly 

more far-sightedly in the following trial compared to trials in 
which participants had not encountered the minimum airport 
price in the previous trial (FSQ: 74.7% vs. 23.2%; A = .68 ; 
U=3203, p=<.001).

The positive effect of AI-generated decision aids was also 
evident in participants’ click agreement with the instructed 
strategy. Participants in the experimental group showed 
significantly higher click agreement than the control group 
in both tasks (Road Trip task: A = .72 ; U=838, p=<.001, 
Mortgage task: A = .78 ; U=659, p=<.001). In the Road Trip 
task, the average click agreement was 27.9% in the control 
condition and 49.8% in the experimental condition (medi-
ans: 26.5% vs. 53.1%; see Fig. 9d). In the Mortgage task, 
the stopping rule of the recommended strategy was never 
met; thus the mean click agreement only differed from the 

Fig. 9   Results of Experiment 
2. The decision aids gener-
ated by our AI method boosted 
participants far-sightedness 
and performance in the Road 
Trip and Mortgage task. The 
experimental group was aided 
by the procedural instructions 
generated by our computa-
tional method. All differences 
are statistically significant (all 
p ≤ .01 ). Panels a and b: The 
experimental group planned 
more far-sighted than the con-
trol group. Panels c and d: The 
experimental group achieved 
higher click agreements than 
the control group. Panels e and 
f: Performance in both tasks 
was measured according to each 
task’s objective. Higher scores 
mean better performance
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FSQ in the sense that it penalized not clicking all long-term 
options available. This was rarely the case; hence the click 
agreement was similar to the FSQ (control condition: 50.4%; 
experimental condition: 82.9% see Fig. 9c).

Furthermore, we found that the AI-generated decision 
aid significantly boosted participants’ performance in both 
tasks (Road Trip task: A = .66 ; U=994, p=.001, Mortgage 
task: A = .78 ; U=654, p=<.001). On average a participant in 
the control condition selected the cheapest mortgage in only 
46.8% of trials (median: 40.2%); by contrast participants in 
the experimental condition selected the cheapest mortgage 
80.7% of the time (median: 87.5%; see Fig. 9e). In the Road 
Trip task, the AI-generated decision aid increased the par-
ticipants’ score from 237.4 points in the control condition 
(median: 252.3) to 276.3 points in the experimental condi-
tion (median: 300.6; see Fig. 9f).

Finally, we inspected how participants reached their deci-
sions when they deviated from the recommended strategy. 
To do so, we averaged the frequency of the most common 
ways in which participants deviated from the optimal strat-
egy across the two tasks. Out of every trial in which partici-
pants did not follow the recommended strategy, 21.1% of the 
trials involved no clicks at all, in 35% of trials participants 
started by inspecting an immediate outcome, in 12.5% of 
trials participants started by clicking on an intermediate out-
come, and in 31.4% of trials participants started by inspect-
ing a final outcome but then deviated from the optimal strat-
egy in a later step. Two thirds of the time, the latter deviation 
already occurred in the second click.

Discussion and Conclusion

In this work, we developed a new approach to boost-
ing human decision-making. While most previous work 
designed decision aids by hand, we extended a computa-
tional method that uses AI to generate decision aids auto-
matically. Our method discovers and describes near-optimal 
strategies for human decision-making. The main technical 
contribution of this article was to develop an algorithm for 
transforming disjunctive normal form descriptions of plan-
ning strategies into procedural instructions for good deci-
sion-making that are easy to understand.

The results of Experiment 1 suggested that people can 
understand the kind of procedural instructions generated by 
our new method faster and follow the strategy more accu-
rately than when it was conveyed by the decision aids gen-
erated by our previous method (Skirzyński et al., 2021a). 
Moreover, we demonstrated that the decision aids generated 
by our new method can improve human decision-making 
in two naturalistic tasks: planning a road trip and choos-
ing a mortgage. Our AI-generated decision aids improved 
the process and outcomes of people’s decision-making in 

both tasks. This happened despite the fact people had the 
freedom to use their own decision strategy for those tasks. 
Presumably, people used the strategies hinted by our deci-
sion aid since they believed that it would be beneficial for 
them. To the best of our knowledge, this is the first demon-
stration that human decision-making in naturalistic tasks can 
be improved in this way by AI-generated natural language 
descriptions of near-optimal decision strategies.

Together, the two major components of our AI-powered 
boosting method, that is AI-Interpret and DNF2LTL, give 
rise to a new algorithm for explainable reinforcement learn-
ing that can create descriptions of virtually any learned 
policy (Puiutta & Veith, 2020; Dazeley et al., 2021). Our 
experiments indicated that this new algorithm generates 
syntactically interpretable descriptions, that when translated 
into natural language, facilitate people’s trust. People fol-
lowed the policy and planned far-sightedly in Experiment 2 
after only being presented with the output of AI-powered 
boosting as a decision aid they could use or ignore. Future 
work on explainable reinforcement learning should aim 
to test this new algorithm on a wider range of tasks and 
environments.

The goal of this article was to develop a method for 
improving human decision-making. We therefore evaluated 
our overall approach by whether and to which extent the 
resulting decision aids leads to better decisions. This metric 
depends on how much better the resource-rational strategy 
for a given decision problem is than people’s intuitive strat-
egy, the method used to discover the resource-rational strat-
egy, and how accurately the automatically generated natural 
language description captures the essence of the discovered 
strategy. Each of those components can be assessed sepa-
rately. For an in-depth evaluation of how accurately the natu-
ral language instructions generated by our method describe 
the different decision strategies, please see Skirzyński et al. 
(2021b).

Our experiments demonstrate that the decision aid 
boosted people’s performance in the assisted decisions by 
guiding them through the process of executing a resource-
rational decision strategy. This strategy ensured that par-
ticipants considered the most important consequences of 
the actions they were choosing between. It thereby guided 
them to utilize crucial information that they might not have 
seen otherwise. In principle, this improvement might have 
occurred solely because the participant blindly followed 
the instructions of the decision aid. However, it is also con-
ceivable that practicing good decision-making with a deci-
sion aid improves people’s decision-making competency. 
Concretely, people’s decision-making competence might 
improve because they internalize the described decision 
strategy through repetition or because they gain insights into 
the logic of the conveyed strategy and why it is adaptive. If 
that were the case, then they might also use the conveyed 
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strategy in future decisions they make without the decision 
aid. In that case, our decision aid would have boosted not 
just their performance in the task, but also their decision-
making competence. Given that people can learn and trans-
fer adaptive decision strategies through practice (Callaway 
et al., 2022a; He et al., 2021; He & Lieder, 2022), repeatedly 
using our decision aids might indeed have led to learning-
induced improvements in their decision-making competency. 
Testing whether such learning occurs is an important direc-
tion for future research.

Whether our decision aid boosted people’s decision-mak-
ing competence is closely related to the question of why and 
how its provision improved people’s decisions. There are at 
least two possible mechanisms: insight versus compliance. 
According to the first hypothesis (i.e., insight), the deci-
sion aid helped people gain insights into the logic of good 
decision-making that they then autonomously applied to 
improve their performance. Concretely, people might try out 
the recommended strategy because they have some level of 
trust in such recommendations. Because the recommended 
strategy is highly adaptive, the experienced outcomes will 
likely convince the participants that using the strategy is 
beneficial for them. Moreover, they might realize that the 
far-sighted strategy is adaptive because the final outcomes 
are more variable than earlier outcomes (insight). Based on 
that, they might then choose to continue using the strategy 
because they conclude that it works well and makes sense. 
According to the second hypothesis, participants interpreted 
the decision aid as a series of orders that they felt obliged 
to follow. Moreover, participants might have followed those 
instructions without understanding why they make any 
sense. We think that the most extreme version of this inter-
pretation is unlikely because Experiment 2 emphasized the 
participants’ autonomy by framing the decision aid as advice 
(see Fig. 8). However, participants often comply with what 
they perceive to be the experimenter’s implicit expectations, 
regardless of what the experimenter’s actual intent is Orne 
(1996). Moreover, our experiments were not designed to 
distinguish between the two interpretations. Therefore, the 
mechanism through which the observed improvements were 
attained remains unclear. To address this important question, 
future studies should measure why participants followed the 
recommended strategy and test participants’ understanding 
of the logic behind the recommended strategy and why it is 
effective. Based on existing measures of autonomous moti-
vation (Sheldon et al., 2004), future studies could measure 
why participants followed the recommended strategy by ask-
ing them to rate to which extent they followed the strategy 
because they felt that it was required or expected of them and 
to separately rate to which extent they followed it because it 
made sense to them and because they thought it was a good 
strategy.

Since we designed our algorithm for generating natural 
language descriptions of decisions strategies with a particu-
lar class of problems in mind and only tested it on those 
problems, it remains unclear how well it would work for 
other kinds of decision problems. The principles are general 
enough that they are applicable to a wide range of decision 
problems. However, the dictionary is application-specific, 
and the implementation uses heuristics that probably will not 
work well for all possible applications. Therefore, depending 
on how different future applications will be from the ones we 
tackled in this article, our method will require some amount 
of adaptation. Nevertheless, our work provides a proof of 
concept that it is possible to discover and describe rational 
decision strategies automatically. Developing a more princi-
pled and more general translation algorithm is an important 
direction for future work.

Based on our positive findings on improving people’s 
decision-making, we believe that future research should 
focus on even more realistic tasks and decision support in 
the real world. In this work, we found that the near-opti-
mal decision strategy that the automatic strategy discovery 
method (Callaway et al., 2022a; Skirzyński et al., 2021a) 
discovered for a simple Mouselab-MDP task (see Fig. 3) 
could be automatically translated into effective decision 
aids for two more complex and more naturalistic tasks (see 
Fig. 2). This worked not only for the Road Trip task that is 
structurally similar to the Mouselab-MDP task, but also for 
the problem of choosing a mortgage that is analogous to 
the Mouselab-MDP task at a more abstract level. This sug-
gests that our method is, in principle, applicable to a wide 
range of decision problems people face in the real world 
as long as the essential structure of those problems can be 
modeled within our general metalevel MDP framework 
(Griffiths et al., 2019; Callaway et al., 2022b; a). We have 
previously argued that this is the case for a wide range of 
common real-world decisions, such as purchasing decisions, 
hiring choices, investment decisions, deciding which char-
ity to donate to, medical diagnosis, treatment planning, and 
credit approval decisions (Mehta et al., 2022; Skirzyński 
et al., 2021a; Consul et al., 2022; Callaway et al., 2022a).

Applying our approach to such real-world problems requires 
building models of real-world decisions. Developing such 
models generally requires making evidence-based assumptions 
about the structure of the real world. Our knowledge of the 
real-world problems in which people have to make decisions 
are inevitably uncertain, sometimes inaccurate, and usually 
incomplete (Hertwig et al., 2019). However, our approach does 
not require that all of those assumptions are correct. To the 
contrary, the methods described here can be combined with 
recent advances that have made strategy discovery methods 
robust to errors in the model of the decision problems to be 
solved (Mehta et al., 2022). Moreover, our strategy discov-
ery methods can also be extended to environments where the 
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true state of affairs is unknown because it cannot be observed 
directly (Heindrich et al., 2022). In practice, the applicability 
of our method also depends on the size of the model. However, 
technical advances in machine learning methods for automatic 
strategy discovery are making our approach increasingly more 
scalable (Consul et al., 2022). Regardless thereof, making AI-
powered boosting work in the real world remains a difficult 
challenge. Whether future work will be able to overcome the 
remaining difficulties remains to be seen, but the results pre-
sented in this article make us cautiously optimistic.

Appendix 1. Experiment 1: Task instructions

Experiment 1 consisted of a condition that was assisted 
by static descriptions (flowchart) and a condition that was 
assisted by procedural instructions. To inform participants 
how to use the static descriptions in the task at hand, we used 
the following instructions:

“Flowchart: The description of the strategy takes the form 
of a flowchart. It walks you through a list of one or more 
questions that you need to answer to by looking at the tree, 
and describes which nodes to click. Look at the image below 
to see how a flowchart can look like. Task procedure: 1. 
Read the flowchart carefully. 2. Think of a node you would 
like to click 3. Go through the flowchart and answer ques-
tions about that node. 4. Click that node if the flowchart 
landed you in a “Click it” decision. Otherwise, think of a 
different node. 5. Once you are sure that you clicked all 
the nodes the flowchart allows clicking — that is it would 
evaluate to “Don’t click it” for every node — click Next to 
advance to the next trial.”

To inform participants how to use the procedural instruc-
tions in the task at hand, we used the following instructions:

“Instructions: The description of the strategy is conveyed 
as a sequence of instructions. The instructions tell you what 
to click step by step. Look at the image below to see how 
a sequence of instructions can look like. Task procedure 
To enact the strategy conveyed by the instructions, do the 

following: 1. Read the instructions carefully. 2. Click the 
nodes by following the procedure described in the instruc-
tions. 3. Once there are no more nodes the instructions allow 
clicking, click Next to advance to the next trial.”

Appendix 2. Experiment 1: Development 
of click agreement over time

The development of click agreement over time is illus-
trated in Fig. 10a. A linear regression model found that 
the click agreement in the static descriptions condition 
kept stable over time ( � = 0.002, p = .66 ), whereas it sig-
nificantly increased in the procedural instructions condi-
tion ( � = 0.013, p = .002 ), suggesting that the procedural 
instructions condition learned to apply the instructed 
strategy more precisely over time. Further, we found 
that the expected score (see Fig. 10b) did not systemati-
cally change over time in the static descriptions condition 
( � = 0.152, p = .487 ) and in procedural descriptions con-
dition ( � = −0.038, p = .87 ). Lastly, we found that the fit-
ted intercepts did not significantly differ between condi-
tions (click agreement: � = 0.1, p = .198 ; expected score: 
� = 2.1, p = .279 ), indicating that there were no differences 
in the initial understanding of the task between conditions.

Appendix 3. Experiment 2: Task instructions

These were the instructions on the Road Trip Task: “In the 
Travel Planner game, you pretend to be a travel planner. 
You start by seeing a map as shown below. Your client 
needs to travel from the city with the car (Ruby Ridge) to 
one of the cities with an airport. Getting from city A to 
city B is only possible when there is an arrow from city 
A to city B. Your client can travel only one city per day. 
During the night, he or she stays in a hotel, which costs 
money. Your client wants a morning flight, so they must 

Fig. 10   Experiment 1: a Pro-
cedural instructions are more 
interpretable than flowcharts. 
The plot shows the mean click 
agreement of participants per 
condition as a function of 
trial. Click agreement with the 
instructed clicking strategy 
was measured as the propor-
tion of consistent clicks out 
of all performed clicks. b The 
mean expected score that per 
condition as a function of trial. 
The shaded areas mark the 95% 
confidence intervals
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pay for a hotel in the airport city as well. The price of the 
hotel varies between the different cities. Airport hotels 
start at $20.Your client is on a tight budget of $500 and 
wishes to take the cheapest route. Your goal is to choose 
which cities to traverse so that the price of the trip was as 
cheap as possible. You can look up the price of the cheap-
est hotel in a city by typing the city name in a text box and 
clicking Reveal. The prices are negative to convey the cost 
you will incur by staying in the city.When you look up a 
city, its price is revealed on the map. Revealing the price 
costs $10. At any time, you can select parts of the client’s 
route by clicking on the arrows. If you change your mind, 
you can unselect arrows by clicking them again. When 
you have finalized your route, click Submit. You do not 
need to check the prices of every city on the route before 
submitting.”

In addition, the experimental group received this informa-
tion: “Advice for scoring a high bonus: To help you score 
higher in the roadtrip planner game, we will show you its 
near-optimal strategy. This strategy describes in what order 
to explore the hotel prices. Please take a moment to under-
stand this advice and how you could apply it in the game. 
Look up the prices of the most distant hotels that you have 
not looked up yet. Repeat this step until all the distant hotels’ 
prices are looked up or you have encountered the lowest 
possible hotel price.”

These were the instructions on the Mortgage task: “In the 
Mortgage game, you have found your dream property and 
want to ask the bank for a loan. The bank presents you with 
three different mortgage plans. Each mortgage plan has three 
different interest rates: One for the 1st year (2022), one for 
the 2nd until 5th year (2023–2027) and one for the 6th until 
30th year (2028–2052). Unfortunately, the bank clerk forgot 
to tell you about the interest rates. In the example below, 
you can see three plans (Mortgage plan A, Mortgage plan 
B, Mortgage plan C) but their corresponding interest rates 
are hidden underneath the blue fields. You decide to call the 
bank to ask about the interest rates. However, the bank clerk 
only has time to tell you up to three interest rates. Each time 
a bank clerk tells you about the interest rate corresponds 
to one click. That means you can only click up to 3 times. 
Below you will see an example with one field revealed. In 
the example, the interest rate from 2023 to 2027 for mort-
gage plan B was revealed. In the example, you would have to 
pay 1.61% interest rate in each of the 4 years when you select 
mortgage plan B. You can click up to 3 times, after which 
you have to make a decision which mortgage plan to choose. 
You can select a mortgage plan at any time by clicking on 
the grey mortgage plan button (A, B or C).”

In addition, the experimental group received this informa-
tion: “Advice for scoring a high bonus: To help you score 
higher in the mortgage game, we will show you its near-
optimal strategy. This strategy describes in what order to 

Fig. 11   Experiment 2: The 
experimental group (red) was 
supported by our decision aid 
whereas the control group (blue) 
was not. (a) The plot shows the 
average far-sightedness quotient 
as a function of trial per condi-
tion for the Mortgage task. b 
The plot shows the average far-
sightedness quotient as a func-
tion of trial per condition for 
the Road Trip task. c The plot 
shows the proportion of optimal 
choices as a function of trial per 
condition for the Mortgage task. 
d The plot shows the average 
score as a function of trial per 
condition for the Road Trip 
task. The shaded areas mark the 
95% confidence intervals
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explore the interest rates. Please take a moment to under-
stand this advice and how you could apply it in the game: 
Click the most long-term interest rates that you have not 
clicked yet. Repeat this step until all the long-term interest 
rates are clicked, or you have encountered the lowest pos-
sible interest rate.”

Appendix 4. Experiment 2: Development 
of FSQ over time

In an exploratory analysis, we regressed the participant’s 
FSQ in each task on the predictors decision aid and trial 
number and their interaction. We found that the intercept 
was significantly larger in the experimental condition than 
in the control condition in both tasks (Mortgage task: 
𝛽 = 0.35, p < .001 ; Road Trip task: 𝛽 = 0.31, p < .001 ), 
suggesting that the provision of the decision aid led to an 
immediate improvement in far-sightedness. As illustrated 
in Fig. 11, we found that in the Mortgage task the FSQ 
kept stable over time (trial number: � = 0.01, p = .075 ), 
whereas we found that the FSQ increased over time in 
the Road Trip task (trial number: 𝛽 = 0.03, p < .001 ). The 
interaction of trial number and decision aid was insig-
nificant for both tasks (Mortgage task: � = 0.00, p = .266 ; 
Road Trip task: � = 0.00, p = .357 ), indicating that the 
presence of the decision aid did not limit the learning.

Appendix 5. Experiment 2: Development 
of performance over time

In addition, we regressed the participants’ performance in 
each task on the predictors decision aid and trial number 
and their interaction. We found that the intercept was sig-
nificantly larger in the decision aid condition than in the 
no aid condition in the Mortgage task, but not in the Road 
Trip task (Mortgage task: 𝛽 = 2.5, p < .001 ; Road Trip 
task: � = 29.4, p = .1 ). As illustrated in Fig. 11c, we found 
that in the Mortgage task, the number of optimal choices 
increased over time (trial number: � = 0.12, p = .034 ). As 
illustrated in Fig. 11d, we found that in the Road Trip 
task the score increased over time, however not signifi-
cantly (trial number: � = 4.7, p = .068 ). The interaction 
of trial number and decision aid was insignificant for both 
tasks (Mortgage task: � = −0.02, p = .785 ; Road Trip task: 
� = 2.3, p = .509).
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